
HOMEWORK 8

Due Thursday, March 16, at 11pm

Please enter your answers into the starter code Jupyter notebook and submit by the deadline

via canvas.

Intersection of Line Segments. Here is a class for line segments that stores line segments

by the coordinates of their end-points.

class LineSegment():

def __init__(self, x1, y1, x2, y2):

self.x1 = x1

self.x2 = x2

self.y1 = y1

self.y2 = y2

def intersect(self, other):

# ...

# returns the coordinates of the intersection point of self and other

# returns None if there is no intersection point

# can assume line segments are not parallel

Implement the intersect function for the line segment class. You can assume that the

line segments are not parallel. The function should return None if the line segments do not

intersect.

Polynomial Regression and Overfitting. The starter code for this problem contains:

• A data-set called data that is provided to you as a list.

• A class called PolyFitter(degree) that uses the built-in linear regression model

in sklearn to fit not just a linear function but a polynomial function of any degree

(like f(x) = ax10 + bx9 + · · · + k) to the data. (you are not responsible for this

but how does it do that?! easy: give x2, x3,. . . to the model as if they were extra

information about the data points, read the code you are provided with if you are

curious).

The way PolyFitter works is as follows:
1



As you can see, picking a high degree polynomial fits the data much more precisely at

certain points. But clearly, this degree 20 aporoximation is not really capturing the essence

of this data-set. Your job is:

• Write the mean squared error(X, Y) function in the class. It should return the

average of the square of the difference between the model’s predictions (obtained

using self.predict(X)) and the given answers Y . This will allow us to see how

our model is doing.

• Split the data into 75% training examples and 25% test examples (You don’t need

to shuffe the data, just split it). More precisely, from the list data given to you,
2



make four numpy arrays. X train, Y train, X test and Y test. The training

arrays should contain the x and y coordinates of 75% of data-points while the test

arrays should contain the remaining 25%. We will use the training pair to train the

model, and the test pair to see how our model is doing on data that it has not seen

before. This is a standard method for avoiding the mistake of making models that

work really well during development, but then work very badly when they see data

they have never seen before.

• For each degree d = 1, 2, 3, 4, . . . , 20, train a model = PolyFitter(d) with the

data X train, Y train, plot what we have using model.plot() then compute

its mean squared error on the training set X train, Y train, also compute its

mean squared error on the test data-set X test, Y test. Plot this ‘training error’

and ‘test error’ over d = 1, . . . , 20.

Source: XKCD

You should notice that as the degree increases, the training error goes down a

lot, which means that our model is becoming very good at fitting to the training

data. But, for the test data, it gets worse and worse. What’s the best degree for

this data-set?

(Optional) Linear Regression by Gradient Descent. In the lectures, we learned about

linear regression, which fits a linear function to a data-set. Download the starter code for

this homework from the same page where you downloaded the pdf file. The starter code

should come with a file called nba data.csv where we have some data about NBA players.

That file should be in the same folder as the starter code notebook.

The first part of the starter code contains code for doing linear regression (using gradient

descent) that makes the best possible linear function to guess the weight of an NBA player

from the height (weight = a * height + b ). A few parts of the code are missing: the

part that fills the numpy arrays, part that computes the gradient, some of the gradient

descent code, . . . ). Complete the relevant parts of the code to make it work. Once it works,
3



you should see pictures of our linear approximation at various stages during this ‘training’.

There are more instructions on the starter code notebook.

(Definitely email me your solution if you do this) Modify the code so that your model

approximates the weight as weight = a * height + b * age + c. You will need

three partial derivatives and update all three variables during gradient descent. Does taking

age into account give you a better fit (less total error)?

4


