HOMEWORK 5

Due Thursday, Feb 23, at 11pm

Please enter your answers into a Jupyter notebook and submit by the deadline via canvas.

A Class for Polynomials. Design a class called Polynomial for polynomials in one variable. You should use a list to store the coefficients of the polynomial. I should be able to do the following:

- Initialize my polynomial using a list of its coefficients: e.g. p = Polynomial([1.0, 2.0, 3.0])
- Print my polynomial: e.g. print(p) for the p above should give: $1.0 x^{\wedge} 0+$ $2.0 x^{\wedge} 1+3.0 x^{\wedge} 2$. You should implement __repr_-(self) in your class for this, which should return a string. (optional: make sure you print negative coefficients correctly)
- Add polynomials to get a new polynomial. (implement __add_- (self, other) in your class for this, it should return a new polynomial)
- Evaluate the polynomial at a value x by running p.eval(x). e.g. for the above polynomial, p.eval(2.0) should return 17.0.

Complex Numbers in Python. Complex numbers are numbers of the form $a+b i$ where $a, b \in \mathbb{R}$. The number $i=\sqrt{1}$ is the formal square root of 1 , which we pretend exists. So we have $i^{2}=-1$, and $i^{3}=-i$ and $i^{4}=1$. The rules for addition and multiplication of complex numbers follow the usual algebraic rules. For example:

$$
(2+3 i)+(1+5 i)=3+8 i
$$

$$
(2+3 i)(1+5 i)=2+10 i+3 i+15 i^{2}=2+13 i-15=-13+13 i
$$

We can represent complex numbers on the plane as follows:

Here the number $z=x+y i$ is represented on the plane. $\bar{z}=x-y i$ is called the complex conjugate of z. We have

$$
z \bar{z}=(x+y i)(x-y i)=x^{2}-x y i+y x i-y^{2} i^{2}=x^{2}+y^{2}
$$

So the norm (i.e. distance to the origin) of a complex number z is $|z|=\sqrt{x^{2}+y^{2}}=\sqrt{z \bar{z}}$.
The angle φ between z and the x axis is called the phase of z. If z has phase φ, then $z=|z|(\cos (\varphi)+i \sin (\varphi))$.

We have the formula

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

So, for every complex number z, we have:

$$
z=|z| e^{i \operatorname{phase}(z)}
$$

This leads to the famous formula:

$$
e^{i \pi}=-1
$$

(math-tattoo anyone?)
Remark:

$$
z_{1} z_{2}=\left|z_{1}\right| e^{i \operatorname{phase}\left(\mathrm{z}_{1}\right)}\left|z_{2}\right| e^{i \operatorname{phase}\left(\mathrm{z}_{2}\right)}=\left|z_{1}\right|\left|z_{2}\right| e^{i\left(\operatorname{phase}\left(z_{1}\right)+\operatorname{phase}\left(z_{2}\right)\right)}
$$

So when you multiply two complex numbers, you multiply the norms, and you add up the angles.

In Python, complex numbers are represented by expressions like $2+3 j$. Here, it is important that there is no space between the 3 and the j.
 imaginary parts of z, namely 3 and 4 in this case.

- Write a function norm (z) that returns the norm of a complex number z. (as a float. e.g. (norm ($3+4 j$) should return 5.0))
- Understand the code below, and then complete the function below to produce the pictures shown.

```
import libhw01 as libhw
from cmath import phase
import math
from math import pi
# draws a picture for a function f: Complex -> Reals
def drawComplexFunction(f, imsize=300):
    g = lambda x,y: f(x+y*lj)
    libhw.drawfunction(g, imsize=imsize)
def norm(z):
    return math.sqrt(z.real * z.real + z.imag * z.imag)
def f_one(z):
    if # . . . something about phase(z) . . .
        return 1.0
    return 0.0
def f_two(z):
    # modify f_one, hint: take a power of z
    return 0.0
# modify this function to get the one in the third picture
def f_three(z):
    return math.sin(phase(z) + norm(z))
def f_four(z):
    # combine the ideas of f_two and f_three
    # and then figure out a trick to shift the picture slightly in one direction
drawComplexFunction(f_one)
drawComplexFunction(f_two)
drawComplexFunction(f_three)
drawComplexFunction(f_four)
```


The Julia Set in the Complex Plane. The Julia set J_{c} is defined as follows. Let $f(z)=$ $z^{2}+c$. Apply f repeatedly to a complex number z, i.e. take $f(z), f(f(z)) . f(f(f(z)))$, ...This is an example of a dynamical system.

As you do this, a typical point will lead to expenential growth as you keep squaring and adding c (i.e. the norm grows exponentially). The Julia set J_{c} is the set of points which don't grow exponentially when you do this.

To compute the Julia set, we will do the following: we will start with z and compute $f(z)$, $f(f(z)) . f(f(f(z))), \ldots f^{k}(z)$ for a fixed k, e.g. $k=100$. If the result has norm $\left|f^{k}(z)\right|<2$, we will assume z is in the Julia set.

To get a little nicer a picture of the Julia set, we will do the following: $\left|f^{k}(z)\right|<2$ after k iterations, the pixel will have white value (i.e. your function should output 1), but if $\left|f^{i}(z)\right|>2$ at the i th iteration and not before, then the value will be i / k, so that it appears more white the closer it is to the actual Julia set.

- Complete the code below to draw the Julia set for $c=0.28+0.008 i$.
- Find another c which gives an interesting picture (you will have to do this by trial and error).

```
def julia(c,z):
    k = 100
    # in a loop, compute f^i(z) and see when it moved out of the circle of radius
            2
    # when it leaves, return i/k
def my_julia(z):
    return julia(0.28 + 0.008j, z)
drawComplexFunction(my_julia, imsize=600) # imsize = 600 for a little better
    resolution
```

The Mandelbrot Fractal. Which c 's give interesting Julia sets J_{c} ? One way to analyze that is the following question: for which c 's will the sequence $f(0), f(f(0)), \ldots, f^{k}(0), \ldots$ not grow exponentially? If we draw the answer to this, we get the Mandelbrot fractal. i.e. the Mandelbrot fractal is the set of points in the complex plane for which $f(0), f(f(0)), \ldots, f^{k}(0), \ldots$ does not grow exponentially.

- Complete the code below to draw the Mandelbrot fractal.

```
def mandel(c):
    k = 100
    # . . . should return 1.0 if c is in the Mandelbrot set, and 0.0 otherwise .
        . .
drawComplexFunction(mandel)
```

For values c closer to the edge of the Mandelbrot set, you get the most interesting Julia sets J_{c}. Using this, you can explore more nice values of c for the previous question (optional).

Zooming in/out. We drew these fractals but we would like to frame them nicely and/or zoom into them. At the moment, drawComplexFunction(mandel) has the top left corner at $-1+i$ and the bottom-right at $1-i$. Write a function reframe (f, z_top_left, z_bottom_right) which takes a function $f: \mathbb{C} \rightarrow \mathbb{R}$ and zooms into the square whose top left corner is z_top_left and and bottom-right corner is z_bottom_right

For example drawComplexFunction(reframe(f_four, 0.2 - 0.1j, 0.6-0.5j)) should give the picture on the right.

def reframe(f, z_1, z_2):
def reframe(f, z_1, z_2):
def g(z):
def g(z):
new_z = ???
new_z = ???
return f(new_z)
return f(new_z)
return g
return g

Hint: There are two ways to do this. The first is to get the real and imaginary parts and solve it as a problem for functions $\mathbb{R}^{2} \rightarrow \mathbb{R}$. The other, more difficult way is to solve the problem for for real numbers and intervals and then generalize to complex numbers.

- Use the reframe function you wrote to zoom in (a lot, e.g. 100x, i.e. your top left and bottom right should differ by a complex number of norm around 0.01) to a nice looking part of the Mandelbrot or Julia fractals (you may need to increase k to get enough detail).

