
HOMEWORK 5

Due Thursday, Feb 23, at 11pm

Please enter your answers into a Jupyter notebook and submit by the deadline via canvas.

A Class for Polynomials. Design a class called Polynomial for polynomials in one

variable. You should use a list to store the coefficients of the polynomial. I should be able

to do the following:

• Initialize my polynomial using a list of its coefficients: e.g. p = Polynomial([1.0,

2.0, 3.0])

• Print my polynomial: e.g. print(p) for the p above should give: 1.0xˆ0 +

2.0xˆ1 + 3.0xˆ2. You should implement repr (self) in your class for this,

which should return a string. (optional: make sure you print negative coefficients

correctly)

• Add polynomials to get a new polynomial. (implement add (self, other) in

your class for this, it should return a new polynomial)

• Evaluate the polynomial at a value x by running p.eval(x). e.g. for the above

polynomial, p.eval(2.0) should return 17.0.

Complex Numbers in Python. Complex numbers are numbers of the form a+ bi where

a, b ∈ R. The number i =
√

1 is the formal square root of 1, which we pretend exists. So we

have i2 = −1, and i3 = −i and i4 = 1. The rules for addition and multiplication of complex

numbers follow the usual algebraic rules. For example:

(2 + 3i) + (1 + 5i) = 3 + 8i

(2 + 3i)(1 + 5i) = 2 + 10i+ 3i+ 15i2 = 2 + 13i− 15 = −13 + 13i

We can represent complex numbers on the plane as follows:
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Here the number z = x+ yi is represented on the plane. z̄ = x− yi is called the complex

conjugate of z. We have

zz̄ = (x+ yi)(x− yi) = x2 − xyi+ yxi− y2i2 = x2 + y2

So the norm (i.e. distance to the origin) of a complex number z is |z| =
√
x2 + y2 =

√
zz̄.

The angle ϕ between z and the x axis is called the phase of z. If z has phase ϕ, then

z = |z|(cos(ϕ) + i sin(ϕ)).

We have the formula

eiθ = cos θ + i sin θ

So, for every complex number z, we have:

z = |z|eiphase(z)

This leads to the famous formula:

eiπ = −1

(math-tattoo anyone?)

Remark:

z1z2 = |z1|ei phase(z1)|z2|ei phase(z2) = |z1||z2|ei(phase(z1)+phase(z2))

So when you multiply two complex numbers, you multiply the norms, and you add up

the angles.

In Python, complex numbers are represented by expressions like 2+3j. Here, it is im-

portant that there is no space between the 3 and the j.

If we set z = 3 + 4j then we can use z.real and z.complex to access the real and

imaginary parts of z, namely 3 and 4 in this case.
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• Write a function norm(z) that returns the norm of a complex number z. (as a float.

e.g. (norm(3+4j) should return 5.0))

• Understand the code below, and then complete the function below to produce the

pictures shown.

import libhw01 as libhw

from cmath import phase

import math

from math import pi

# draws a picture for a function f: Complex -> Reals

def drawComplexFunction(f, imsize=300):

g = lambda x,y: f(x+y*1j)

libhw.drawfunction(g, imsize=imsize)

def norm(z):

return math.sqrt(z.real * z.real + z.imag * z.imag)

def f_one(z):

if # . . . something about phase(z) . . .

return 1.0

return 0.0

def f_two(z):

# modify f_one, hint: take a power of z

return 0.0

# modify this function to get the one in the third picture

def f_three(z):

return math.sin(phase(z) + norm(z))

def f_four(z):

# combine the ideas of f_two and f_three

# and then figure out a trick to shift the picture slightly in one direction

drawComplexFunction(f_one)

drawComplexFunction(f_two)

drawComplexFunction(f_three)

drawComplexFunction(f_four)
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The Julia Set in the Complex Plane. The Julia set Jc is defined as follows. Let f(z) =

z2 + c. Apply f repeatedly to a complex number z, i.e. take f(z), f(f(z)). f(f(f(z))),

. . . This is an example of a dynamical system.

As you do this, a typical point will lead to expenential growth as you keep squaring and

adding c (i.e. the norm grows exponentially) . The Julia set Jc is the set of points which

don’t grow exponentially when you do this.

To compute the Julia set, we will do the following: we will start with z and compute f(z),

f(f(z)). f(f(f(z))),. . . fk(z) for a fixed k, e.g. k = 100. If the result has norm |fk(z)| < 2,

we will assume z is in the Julia set.

To get a little nicer a picture of the Julia set, we will do the following: |fk(z)| < 2 after

k iterations, the pixel will have white value (i.e. your function should output 1), but if

|f i(z)| > 2 at the ith iteration and not before, then the value will be i/k, so that it appears

more white the closer it is to the actual Julia set.

• Complete the code below to draw the Julia set for c = 0.28 + 0.008i.
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• Find another c which gives an interesting picture (you will have to do this by trial

and error).

def julia(c,z):

k = 100

# in a loop, compute fˆi(z) and see when it moved out of the circle of radius

2

# when it leaves, return i/k

def my_julia(z):

return julia(0.28 + 0.008j, z)

drawComplexFunction(my_julia, imsize=600) # imsize = 600 for a little better

resolution

The Mandelbrot Fractal. Which c’s give interesting Julia sets Jc? One way to analyze

that is the following question: for which c’s will the sequence f(0), f(f(0)), . . . , fk(0), . . .

not grow exponentially? If we draw the answer to this, we get the Mandelbrot frac-

tal. i.e. the Mandelbrot fractal is the set of points in the complex plane for which

f(0), f(f(0)), . . . , fk(0), . . . does not grow exponentially.

• Complete the code below to draw the Mandelbrot fractal.

def mandel(c):

k = 100

# . . . should return 1.0 if c is in the Mandelbrot set, and 0.0 otherwise .

. .

drawComplexFunction(mandel)

For values c closer to the edge of the Mandelbrot set, you get the most interesting Julia

sets Jc. Using this, you can explore more nice values of c for the previous question (optional).

Zooming in/out. We drew these fractals but we would like to frame them nicely and/or

zoom into them. At the moment, drawComplexFunction(mandel) has the top left

corner at −1+i and the bottom-right at 1−i. Write a function reframe(f, z top left,

z bottom right) which takes a function f : C→ R and zooms into the square whose top

left corner is z top left and and bottom-right corner is z bottom right

For example drawComplexFunction(reframe(f four, 0.2 - 0.1j, 0.6 - 0.5j))

should give the picture on the right.
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def reframe(f, z_1, z_2):

def g(z):

new_z = ???

return f( new_z )

return g

Hint: There are two ways to do this. The first is to get the real and imaginary parts and

solve it as a problem for functions R2 → R. The other, more difficult way is to solve the

problem for for real numbers and intervals and then generalize to complex numbers.

• Use the reframe function you wrote to zoom in (a lot, e.g. 100x, i.e. your top left

and bottom right should differ by a complex number of norm around 0.01) to a nice

looking part of the Mandelbrot or Julia fractals (you may need to increase k to get

enough detail).
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