HOMEWORK 2

Due Thursday, 26 Jan, at 11pm

Please enter your answers into a Jupyter notebook and submit by the deadline via canvas.

Problem 1. Playing computer. Each of the following functions is computing a mathemati-

cal function. Describe, in english or math, what each function is computing. To fiure it out,

you will probably need to choose input values (a.k.a. arguments) in your head and simulate

the running of the program in your head or on paper. Of course, you could just code them

in and plug in examples, but that would defeat the purpose of this whole problem. Write

down your answers in markdown in your Homework02.ipynb.

def c(n):

return True if n % 2 == 0 else False
def ff(n):

answer = 1

while n>1:
answer = answer % n
n=mn-1

return answer

def f(n):
answer = 0
while n > 1:
n=n//2
answer = answer + 1

return answer

def g(x):
y = X
while y >= 1:
y =y - 1.0
return x - y




def h(n):
i=2
while i<n:
if n % (i*xi) == 0:
return True
i +=1

return False

Optional: The above functions don’t always work (e.g. g won’t do something useful if
x < 0, for each function, figure out which values of the arguments will be ok)

Problem 2. This is a little exercise that supposedly people used to get asked about as a
warm-up in programming interviews. I am not sure if this is true, but the lore remains.
If you go to a programming interview, and they asked you some basic programming exer-
cises you would do in HW2 of your first programming class, you can say they asked you

“FizzBuzz” type questions:

Write a program that prints the numbers from 1 to 100. But for multiples of three print
Fizz instead of the number and for the multiples of five print Buzz. For numbers which are
multiples of both three and five print FizzBuzz.

Problem 3. The prime number theorem. The prime number theorem states that as n
becomes large, the number of prime numbers between 1 and n approaches & where
log = log, is the natural logarithm. Write a function num_primes (n), that will give you
the number of primes between 1 and n.

Then, for n = 10,100, 1000, . .., 10%, print out n/logn and num_primes (n).

Problem 4. Write a function factors (n) that will print all the divisors of a number
n. Then write a function prime_factors (n) that will print only the prime factors of a

number n.

Problem 5. Perfect numbers. In number theory, a perfect number is a positive integer that
is equal to the sum of its proper positive divisors, that is, the sum of its positive divisors
excluding the number itself. Example : The first perfect number is 6, because 1, 2, and 3
are its proper positive divisors, and 1 + 2 + 3 = 6. The next perfect number is 28 = 1 +
24447+ 14,

Write a loop that will find next two perfect numbers.

The perfect number after those two is much larger (8 digits) and would take a very long
time to get. Optional: by timing your existing program, estimate how long it would take

your program to to check all 8 digit numbers.



