HOMEWORK 7

Due Thursday, June 8, at the beginning of discussion

- 1. Is $S_3 \times S_3$ isomorphic to either D_{12} or D_{36} ? Prove your answers.
- 2. Make a list of all homomorphisms $\mathbb{Z}/8\mathbb{Z} \to \mathbb{Z}/8\mathbb{Z}$. Prove that this is a complete list.
- 3. (a) Assume $\varphi : G \to H$ is a homomorphism and G is a finite group. If the image of φ has an element of order n, prove that G has an element of order n.
 - (b) Give an example to show that this result does not hold if G is allowed to be an infinite group.
- 4. Prove or disprove: If d divides |G|, then G has an element of order d.
- 5. Denote the center of D_4 by $Z(D_4)$.
 - (a) Explicitly list the elements of $D_4/Z(D_4)$.
 - (b) Determine the order of the elements of $D_4/Z(D_4)$.
 - (c) Is $D_4/Z(D_4)$ isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$?
- 6. Consider that the map

$$\phi: \mathbb{Z}_8 \to \mathbb{Z}_2, \, \bar{k} \mapsto \bar{k}.$$

- (a) Compute the Kernel of ϕ and the Image of ϕ .
- (b) Find a familiar group isomorphic to $\mathbb{Z}_8/Ker(\phi)$. Hint: Use the first isomorphism theorem (also known on the south side as fundamental homomorphism theorem).
- 7. Let $G = \mathbb{Z}_4 \times \mathbb{Z}_6$ and $H = \langle \bar{2} \rangle \times \langle \bar{4} \rangle$.
 - (a) Explicitly list the elements of G/H.
 - (b) Determine the orders of the elements of G/H.
 - (c) Find a familiar group isomorphic to G/H.
- 8. Match the following quotient groups
 - \mathbb{R}/\mathbb{Z}
 - \mathbb{R}/\mathbb{Q}
 - \mathbb{Q}/\mathbb{Z}

to their corresponding properties

- Every element in this group has finite order.
- This group has non-identity elements of finite order and elements of infinite order.
- Every non-identity element in this group has infinite order.
- 9. Prove that $SL_n(\mathbb{R})$ is a normal subgroup in $GL_n(\mathbb{R})$, and that the quotient group $\frac{GL_n(\mathbb{R})}{SL_n(\mathbb{R})}$ is isomorphic to \mathbb{R}^{\times} .
- 10. Prove that $\mathbb{Z} \times \mathbb{Z}/\langle (2,2) \rangle$ is an infinite group but is not an infinite cyclic group.