HOMEWORK 6

Due Thursday, May 25, at the beginning of discussion

- 1. Is the map $\mathbb{Z} \times \mathbb{Z} \to S_3$ given by $(i, j) \mapsto (12)^i (123)^j$ a homomorphism? Prove your answer.
- 2. Find all possible orders in A_5 . (Do not list all the elements, just think of all the possible structures of a permutation in A_5 as a product of disjoint cycles).
- 3. Prove, using induction on n, that every element in S_n is a product of transpositions.
- 4. Prove that every permutation in A_n can be written as a product of 3-cycles.
- 5. Suppose G is a group, $a \in G$ and H is a subgroup of G.
 - (a) Show that if aH = H then $a \in H$.
 - (b) Show that if $a \in H$, then aH = H. (Hint: Assume a belongs to H. Then prove double inclusion: aH is a subset of H, and viceversa.)

(Together, they imply that aH = H if and only if $a \in H$.)

- 6. Suppose G is a group, $a \in G$ and H is a subgroup of G.
 - (a) Show that aH and H have the same cardinality by exhibiting a bijection between the two sets. (Similarly, one can show that Ha and H have the same cardinality, so aH and Ha always have the same cardinality.)
 - (b) Show, by means of an example, that aH is not necessarily equal to Ha. (Hint: it has to be a non-commutative group)
- 7. Suppose G is a group, $a \in G$ and H is a subgroup of G. Show that aH = Ha if and only if $aHa^{-1} = H$.
- 8. (a) Recall that we can view D_{2n} as a subgroup of S_n . Find the partition of S_4 into left cosets of D_8 .
 - (b) Let $H = SL_2(\mathbb{R})$ denote the subgroup of $GL(2,\mathbb{R})$ consisting of all matrices with determinant 1. Describe the partition of $GL(2,\mathbb{R})$ into left cosets of H.