## HOMEWORK 6

Due Thursday, May 25, at the beginning of discussion

1. Is the map $\mathbb{Z} \times \mathbb{Z} \rightarrow S_{3}$ given by $(i, j) \mapsto(12)^{i}(123)^{j}$ a homomorphism? Prove your answer.
2. Find all possible orders in $A_{5}$. (Do not list all the elements, just think of all the possible structures of a permutation in $A_{5}$ as a product of disjoint cycles).
3. Prove, using induction on $n$, that every element in $S_{n}$ is a product of transpositions.
4. Prove that every permutation in $A_{n}$ can be written as a product of 3-cycles.
5. Suppose $G$ is a group, $a \in G$ and $H$ is a subgroup of $G$.
(a) Show that if $a H=H$ then $a \in H$.
(b) Show that if $a \in H$, then $a H=H$. (Hint: Assume $a$ belongs to $H$. Then prove double inclusion: $a H$ is a subset of $H$, and viceversa.)
(Together, they imply that $a H=H$ if and only if $a \in H$.)
6. Suppose $G$ is a group, $a \in G$ and $H$ is a subgroup of $G$.
(a) Show that $a H$ and $H$ have the same cardinality by exhibiting a bijection between the two sets. (Similarly, one can show that $H a$ and $H$ have the same cardinality, so $a H$ and $H a$ always have the same cardinality.)
(b) Show, by means of an example, that $a H$ is not necessarily equal to $H a$. (Hint: it has to be a non-commutative group)
7. Suppose $G$ is a group, $a \in G$ and $H$ is a subgroup of $G$. Show that $a H=H a$ if and only if $a H a^{-1}=H$.
8. (a) Recall that we can view $D_{2 n}$ as a subgroup of $S_{n}$. Find the partition of $S_{4}$ into left cosets of $D_{8}$.
(b) Let $H=S L_{2}(\mathbb{R})$ denote the subgroup of $G L(2, \mathbb{R})$ consisting of all matrices with determinant 1. Describe the partition of $G L(2, \mathbb{R})$ into left cosets of $H$.
