HOMEWORK 5

Due Thursday, May 18, at the beginning of discussion

1. An automorphism of a group G is a group isomorphism $\phi: G \rightarrow G$. List the automorphisms $\mathbb{Z} \rightarrow \mathbb{Z}$ and prove that these are the only automorphisms.
2. Remember to prove your answers in this problem:
(a) Compute the lattice of subgroups of the group $\mathbb{Z} / 45 \mathbb{Z}$ and draw the lattice of subgroups.
(b) Compute the lattice of subgroups of $\mathbb{Z} / 2^{n} \mathbb{Z}$?
3. We know that every subgroup of \mathbb{Z} is cyclic. Find the generators of the following subgroups and prove your answers.
(a) $a \mathbb{Z}+b \mathbb{Z}$
(b) $a \mathbb{Z} \cap b \mathbb{Z}$
4. Let (G, \star) be a group. Fix an element a in G. The centralizer of a in G consists of all the elements of G that commute with a. Namely,

$$
C(a)=\{g \in G: g \star a=a \star g\} .
$$

(the set of all elements x in G that commute with a).
(a) Compute the centralizer of 3 in $(\mathbb{Z},+)$.
(b) Compute the centralizer of the element $r \in D_{6}$; and the centralizer of the element $r \in D_{8}$.
(c) Show that for every group G and every element a in $G, C(a)$ is a subgroup of G.
(d) In general, which one is bigger, $Z(G)$ and $C(a)$? Is one a subgroup of the other?
5. Consider the set $H=\left\{\beta \in S_{5}: \beta(1)=1\right.$ and $\left.\beta(3)=3\right\}$. (Recall that S_{5} consists of bijective functions from $\{1,2,3,4,5\}$ to $\{1,2,3,4,5\}$.)
(a) Show that H is a subgroup of S_{5}.
(b) Show that H is isomorphic to S_{3}.
6. Write down a an isomorphism from $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ to a subgroup of S_{4}. You don't need to prove that the map you wrote is an isomorphism.
7. Let $\alpha=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 1 & 7 & 8 & 6\end{array}\right), \beta=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 8 & 7 & 6 & 5 & 2 & 4\end{array}\right)$.
(a) Compute $\alpha^{-1}, \alpha \beta$
(b) Compute α, β and $\alpha \beta$ as product of disjoint cycles
(c) Compute α and β as product of 2-cycles.
8. Find the order of the following permutations:
(a) $(145)(2345) \in S_{5}$.
(b) $(154)(254)(1234) \in S_{5}$.
(c) $(1574)(324)(3256) \in S_{7}$.
(d) $\sigma: \mathbb{Z} \rightarrow \mathbb{Z}$ where $\sigma(n)=n+3$, as an element of $S_{\mathbb{Z}}$, the group of bijective maps $\mathbb{Z} \rightarrow \mathbb{Z}$ with composition as the operation.
9. What is the maximum order of an element in each of the groups $S_{4}, S_{5}, S_{6}, S_{7}, S_{8}$? Exhibit such an element in each case.

