HOMEWORK 5

Due Thursday, May 18, at the beginning of discussion

- 1. An *automorphism* of a group G is a group isomorphism $\phi : G \to G$. List the automorphisms $\mathbb{Z} \to \mathbb{Z}$ and prove that these are the only automorphisms.
- 2. Remember to prove your answers in this problem:
 - (a) Compute the lattice of subgroups of the group $\mathbb{Z}/45\mathbb{Z}$ and draw the lattice of subgroups.
 - (b) Compute the lattice of subgroups of $\mathbb{Z}/2^n\mathbb{Z}$?
- 3. We know that every subgroup of \mathbb{Z} is cyclic. Find the generators of the following subgroups and prove your answers.
 - (a) $a\mathbb{Z} + b\mathbb{Z}$
 - (b) $a\mathbb{Z} \cap b\mathbb{Z}$
- 4. Let (G, \star) be a group. Fix an element *a* in *G*. The *centralizer* of *a* in *G* consists of all the elements of *G* that commute with *a*. Namely,

$$C(a) = \{g \in G \colon g \star a = a \star g\}.$$

(the set of all elements x in G that commute with a).

- (a) Compute the centralizer of 3 in $(\mathbb{Z}, +)$.
- (b) Compute the centralizer of the element $r \in D_6$; and the centralizer of the element $r \in D_8$.
- (c) Show that for every group G and every element a in G, C(a) is a subgroup of G.
- (d) In general, which one is bigger, Z(G) and C(a)? Is one a subgroup of the other?
- 5. Consider the set $H = \{\beta \in S_5 : \beta(1) = 1 \text{ and } \beta(3) = 3\}$. (Recall that S_5 consists of bijective functions from $\{1, 2, 3, 4, 5\}$ to $\{1, 2, 3, 4, 5\}$.)
 - (a) Show that H is a subgroup of S_5 .
 - (b) Show that H is isomorphic to S_3 .
- 6. Write down a an isomorphism from $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ to a subgroup of S_4 . You don't need to prove that the map you wrote is an isomorphism.

7. Let
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 1 & 7 & 8 & 6 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 8 & 7 & 6 & 5 & 2 & 4 \end{pmatrix}$.

- (a) Compute α^{-1} , $\alpha\beta$
- (b) Compute α , β and $\alpha\beta$ as product of disjoint cycles
- (c) Compute α and β as product of 2-cycles.
- 8. Find the order of the following permutations:
 - (a) $(145)(2345) \in S_5$.
 - (b) $(154)(254)(1234) \in S_5$.
 - (c) $(1574)(324)(3256) \in S_7$.

- (d) $\sigma : \mathbb{Z} \to \mathbb{Z}$ where $\sigma(n) = n + 3$, as an element of $S_{\mathbb{Z}}$, the group of bijective maps $\mathbb{Z} \to \mathbb{Z}$ with composition as the operation.
- 9. What is the maximum order of an element in each of the groups S_4, S_5, S_6, S_7, S_8 ? Exhibit such an element in each case.