HOMEWORK 4

Due Thursday, May 4, at the beginning of discussion

1. Write the Cayley table for the Dihedral group D_{8} with 8 elements. Why is D_{8} not isomorphic to $\mathbb{Z} / 8 \mathbb{Z}$?
2. Describe the following sets:

- $4 \mathbb{Z} \cap 6 \mathbb{Z}=\{x \in \mathbb{Z}: x \in 4 \mathbb{Z}$ and $x \in 6 \mathbb{Z}\}$
- $4 \mathbb{Z} \cup 6 \mathbb{Z}=\{x \in \mathbb{Z}: x \in 4 \mathbb{Z}$ or $x \in 6 \mathbb{Z}\}$
- $4 \mathbb{Z}+6 \mathbb{Z}=\{h+k: h \in 4 \mathbb{Z}$ and $k \in 6 \mathbb{Z}\}$.

For each of set S, either prove that the set is a subgroup of $(\mathbb{Z},+)$, or disprove the claim by means of a counterexample.
3. Let (G, \star) be a group and let H and K be subgroups of G. Prove or disprove each of the following statements. (If it is true, give a proof; if it is false, give a counterexample.)
(a) $H \cap K=\{x \in G: x \in H$ and $x \in K\}$ is a subgroup of G.
(b) $H \cup K=\{x \in G: x \in H$ or $x \in K\}$ is a subgroup of G.
(c) (removed to be added to a later assignment)
(d) Show that if (G, \star) is abelian, then $H \star K$ is a subgroup of G.
(e) If $G=\mathbb{Z}, H=4 \mathbb{Z}$ and $K=6 \mathbb{Z}$, find $s, t \in \mathbb{N}$ such that $H \cap K=s \mathbb{Z}$ and $H+K=t \mathbb{Z}$. How are s and t related to 4 an 6? In general, for $H=m \mathbb{Z}$ and $K=n \mathbb{Z}$, make a conjecture about $H \cap K$ and $H+K$.
4. (postponed to a later assignment)
(a) Compute the list of subgroups of the group $\mathbb{Z} / 45 \mathbb{Z}$ and draw the lattice of subgroups. (prove that you really got all the subgroups)
(b) How many subgroups does $\mathbb{Z} / 2^{n} \mathbb{Z}$ have?
5. Let (G, \star) be a group and let $G_{2}=\{x \in G: x \star x=e\}$.
(a) Find G_{2} for $G=(\mathbb{Z},+),(\mathbb{R}-\{0\}, \cdot),\left(\mathbb{Z}_{6},+_{6}\right)$ and D_{6}. (You may refer back to their group table.)
(b) Disprove the following theorem: For every group G, G_{2} is a subgroup of G. (Make sure you explain why your counterexample disproves the theorem.)
(c) Complete the theorem: If G is \qquad , G_{2} is a subgroup of G. Then prove your theorem.
(d) (optional) Suppose G Is abelian. Is $G_{3}=\{x \in G:: x \star x \star x=e\}$ a subgroup as well? What about G_{n} (for $n \in \mathbb{N}$)?
6. Let $G L_{2}(\mathbb{R})$ be the group of 2×2 invertible matrices, with multiplication. (The elements of $G L_{2}(\mathbb{R})$ have real entries and non-zero determinant.) Consider the matrix:

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 &
\end{array}\right)
$$

a) Find the cyclic subgroup H of $G L_{2}(\mathbb{R})$ generated by the matrix A :

$$
H=\langle A\rangle=\left\{A^{k}: k \in \mathbb{Z}\right\} .
$$

b) Find a familiar group isomorphic to H. Explicitly provide an isomorphism (and check that the given map is, indeed, an isomorphism).
7. Let (G, \star) and (K, \circ) be groups. Let $\phi: G \rightarrow K$ be a group homomorphism (not necessarily an isomorphism). Prove that
(a) $\phi\left(e_{G}\right)=e_{K}$, so ϕ maps the identity of G into the identity of K.
(b) Show that for all $g \in G, \phi\left(g^{-1}\right)=[\phi(g)]^{-1}$.

That is, ϕ maps the inverse of g into the inverse of $\phi(g)$.

