HOMEWORK 3

Due Thursday, April 27, at the beginning of discussion

- 1. (moved to next homework) Write the Cayley table for the Dihedral group D_8 with 8 elements. Why is D_8 not isomorphic to $\mathbb{Z}/8\mathbb{Z}$?
- 2. Prove or disprove: If G is a group and $g, h \in G$, then $(gh)^{-1} = h^{-1}g^{-1}$.
- 3. Prove or disprove: If G is a group, $(g^{-1})^{-1} = g$.
- 4. Which of the following set-operation pairs are groups? All matrices are with real entries. Please prove each answer but feel free to cite any facts from linear algebra.
 - (a) $n \times n$ matrices with matrix addition.
 - (b) $n \times n$ matrices with matrix multiplication.
 - (c) $n \times n$ diagonal matrices with matrix multiplication.
 - (d) $n \times n$ diagonal matrices with no zero-entries in the diagonal, with matrix multiplication.
 - (e) $n \times n$ matrices with non-zero determinant (this is called $\operatorname{GL}_n(\mathbb{R})$), with matrix multiplication.
 - (f) $n \times n$ matrices with determinant +1, with matrix multiplication.
 - (g) $n \times n$ orthogonal matrices (an orthogonal matrix is a matrix whose columns are ortho-normal to each other, equivalently $A^T A = I$), with matrix multiplication.
- 5. Prove that the intersection of two subgroups is always a subgroup. i.e. If G is a group and H and K are subgroups of G, then $H \cap K$ is also a subgroup of G.
- 6. Give an example of two groups with 9 elements each which are not isomorphic to each other (and prove it).
- 7. Assume that G is a group such that for all $x \in G$, x * x = e. Prove that G is an abelian group.
- 8. Let (G, \star) be a group. Define the **center** of G by

$$Z(G) := \{ x \in G \colon x \star a = a \star x, \, \forall a \in G \}.$$

The set Z(G) consists of all elements of G that commute with every possible element of the group. For example, one can say that the matrix 4I belongs to the center of $(GL(2,\mathbb{R}),\cdot)$ because (4I)A = A(4I) for all A in $GL(2,\mathbb{R})$, since both sides are equal to 4A.

- (a) Show that, for every group G, the center Z(G) is a subgroup of G.
- (b) Find the center of $(\mathbb{Z}_4, +)$ and (this part is moved to next homework) the center of D_6 , the dihedral group. (You should be able to tell from the group table.)
- (c) One could say that "the center Z(G) measures the abelian-ness of a group G". Please interpret this statement.¹

¹Recall that a group (G, \star) is called abelian if the operation \star is commutative. *Hint*: What is Z(G) equal to when G is abelian?