HOMEWORK 3

Due Thursday, April 27, at the beginning of discussion

1. (moved to next homework) Write the Cayley table for the Dihedral group D_{8} with 8 elements. Why is D_{8} not isomorphic to $\mathbb{Z} / 8 \mathbb{Z}$?
2. Prove or disprove: If G is a group and $g, h \in G$, then $(g h)^{-1}=h^{-1} g^{-1}$.
3. Prove or disprove: If G is a group, $\left(g^{-1}\right)^{-1}=g$.
4. Which of the following set-operation pairs are groups? All matrices are with real entries. Please prove each answer but feel free to cite any facts from linear algebra.
(a) $n \times n$ matrices with matrix addition.
(b) $n \times n$ matrices with matrix multiplication.
(c) $n \times n$ diagonal matrices with matrix multiplication.
(d) $n \times n$ diagonal matrices with no zero-entries in the diagonal, with matrix multiplication.
(e) $n \times n$ matrices with non-zero determinant (this is called $\mathrm{GL}_{n}(\mathbb{R})$), with matrix multiplication.
(f) $n \times n$ matrices with determinant +1 , with matrix multiplication.
(g) $n \times n$ orthogonal matrices (an orthogonal matrix is a matrix whose columns are ortho-normal to each other, equivalently $A^{T} A=I$), with matrix multiplication.
5. Prove that the intersection of two subgroups is always a subgroup. i.e. If G is a group and H and K are subgroups of G, then $H \cap K$ is also a subgroup of G.
6. Give an example of two groups with 9 elements each which are not isomorphic to each other (and prove it).
7. Assume that G is a group such that for all $x \in G, x * x=e$. Prove that G is an abelian group.
8. Let (G, \star) be a group. Define the center of G by

$$
Z(G):=\{x \in G: x \star a=a \star x, \forall a \in G\} .
$$

The set $Z(G)$ consists of all elements of G that commute with every possible element of the group. For example, one can say that the matrix $4 I$ belongs to the center of $(G L(2, \mathbb{R}), \cdot)$ because $(4 I) A=A(4 I)$ for all A in $G L(2, \mathbb{R})$, since both sides are equal to $4 A$.
(a) Show that, for every group G, the center $Z(G)$ is a subgroup of G.
(b) Find the center of $\left(\mathbb{Z}_{4},+\right)$ and (this part is moved to next homework) the center of D_{6}, the dihedral group. (You should be able to tell from the group table.)
(c) One could say that "the center $Z(G)$ measures the abelian-ness of a group G ". Please interpret this statement. ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ Recall that a group (G, \star) is called abelian if the operation \star is commutative. Hint: What is $Z(G)$ equal to when G is abelian?

