HOMEWORK 2

Due Thursday, April 20, at the beginning of discussion

1. Let $n \in \mathbb{N}$. Find all complex solutions to the equation: $z^{n}=i$.
2. In this problem, you will prove the sin and cos sum formulas in two ways.

$$
\begin{aligned}
& \sin (a+b)=\sin a \cos b+\cos a \sin b \\
& \cos (a+b)=\cos a \cos b-\sin a \sin b
\end{aligned}
$$

- Use Euler's formula: $e^{i a}=\cos a+i \sin a$ to prove the formulas.
- Use the rotation matrix R_{θ} from last term and the fact that the matrix of a composition of two linear transformations is the product of their respective matrices. (therefore $R_{\theta} R_{\nu}=R_{\theta+\nu}$)

3. Prove Euler's formula $e^{i a}=\cos a+i \sin a$ by using the power series expansion of $e^{x}, \sin x$ and $\cos x$.
4. Fill the table for the binary operation in a way that makes the operation associative.

$*$	a	b	c	d
a	a	b	c	d
b	b	a	c	d
c	c	d	c	d
d				

5. Let $M_{2}(\mathbb{R})$ be the set of 2×2 matrices with real entries, and let K be the subset of $M_{2}(\mathbb{R})$ defined by

$$
K=\left\{\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right): a, b \in \mathbb{R}\right\} .
$$

- Show that addition of matrices is a binary operation on K.
- Is $(K,+)$ a group? Prove your answer.
- Show that $(K,+)$ is isomorphic to $(\mathbb{C},+)$. (You need to build a map that associates a complex number to each matrix in K, and you mush show that your map is an isomorphism.)
- Show that multiplication of matrices is a binary operation on K.
- Is $(K, *)$ a group? Prove your answer.
- Show that (K, \cdot) is isomorphic to (\mathbb{C}, \cdot).

6. Let U be a set and let X be the power set of U (that is, the set of all subsets of U). Consider the operation of symmetric difference of sets, defined by

$$
A \triangle B=(A \cup B)-(A \cap B)=(A-B) \cup(B-A) .
$$

The operation of symmetric difference is a binary operation on X.
a) Show that \triangle is commutative.
b) Is there an identity element?
c) Does every set A have an inverse? What is it?
d) Is (U, \triangle) a group?

