HOMEWORK 2

Due Thursday, April 20, at the beginning of discussion

- 1. Let $n \in \mathbb{N}$. Find all complex solutions to the equation: $z^n = i$.
- 2. In this problem, you will prove the sin and cos sum formulas in two ways.

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

- Use Euler's formula: $e^{ia} = \cos a + i \sin a$ to prove the formulas.
- Use the rotation matrix R_{θ} from last term and the fact that the matrix of a composition of two linear transformations is the product of their respective matrices. (therefore $R_{\theta}R_{\nu} = R_{\theta+\nu}$)
- 3. Prove Euler's formula $e^{ia} = \cos a + i \sin a$ by using the power series expansion of e^x , $\sin x$ and $\cos x$.
- 4. Fill the table for the binary operation in a way that makes the operation associative.

*	а	b	с	d
а	а	b	с	d
b	b	а	с	d
с	с	d	с	d
d				

5. Let $M_2(\mathbb{R})$ be the set of 2×2 matrices with real entries, and let K be the subset of $M_2(\mathbb{R})$ defined by

$$K = \left\{ \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right) : a, b \in \mathbb{R} \right\}.$$

- Show that addition of matrices is a binary operation on K.
- Is (K, +) a group? Prove your answer.
- Show that (K, +) is isomorphic to $(\mathbb{C}, +)$. (You need to build a map that associates a complex number to each matrix in K, and you mush show that your map is an isomorphism.)
- Show that multiplication of matrices is a binary operation on K.
- Is (K, *) a group? Prove your answer.
- Show that (K, \cdot) is isomorphic to (\mathbb{C}, \cdot) .

6. Let U be a set and let X be the power set of U (that is, the set of all subsets of U). Consider the operation of *symmetric difference* of sets, defined by

$$A \triangle B = (A \cup B) - (A \cap B) = (A - B) \cup (B - A).$$

The operation of symmetric difference is a binary operation on X.

- a) Show that \triangle is commutative.
- b) Is there an identity element?
- c) Does every set A have an inverse? What is it?
- d) Is (U, \triangle) a group?