HOMEWORK 1

Due Thursday, April 13, at the beginning of discussion

- 1. For a finite set S of size |S| = s, prove that the size of the power set of S is $|\mathcal{P}(S)| = 2^s$.
- 2. Prove that a function $f : A \to B$ is injective if and only if f has a left-inverse. (f has a left-inverse means: there is a function $g : B \to A$ such that $g \circ f = id_A$). Give an example of a function that has a right-inverse but no left-inverse.
- 3. Write down all (complex) solutions to the equation $z^8 = 1$.
- 4. (a) Write down a 2×2 matrix T which flips a vector \vec{v} around the y-axis.
 - (b) Write down a 2×2 matrix R_{θ} which will rotate a vector \vec{v} counter-clockwise by an angle θ . i.e. $R_{\theta}\vec{v}$ will be the rotated version of \vec{v} . For example, if $\theta = \pi/4$, then $R_{\theta}\begin{pmatrix}1\\0\end{pmatrix} = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}$. Explain how you found the matrix. (the entries of R_{θ} should depend on θ).
- 5. Show that a finite union of countable sets is countable.
- 6. Show that every map $f : A \to B$ of sets decomposes as $h \circ g$ where $g : A \to C$ is surjective and $h : C \to B$ is injective.
- 7. Recall that, for $n \in \mathbb{Z}$, n > 0, there is a relation on Z called congruence mod n. The definition is that $a \sim b$ if and only if n divides a b (i.e. there exists a $c \in \mathbb{Z}$ such that cn = a b). Prove that \sim is an equivalence relation.