MATH 3A: HOMEWORK 6

Due Tuesday, Nov 22st, at the beginning of your discussion session

1. As R runs through each of the following six matrices: ex- 7. Use Cramer's rule to find the inverse of the matrix: plain which row operation is performed when a matrix Ais multiplied on the left by the matrix R; and compute $\det R$ and $\det RA$.

$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	0 1 k	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$		0 1 0	$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$
$\begin{bmatrix} 1\\0\\k \end{bmatrix}$	0 1 0		$\begin{bmatrix} k \\ 0 \\ 0 \end{bmatrix}$		$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	$0 \\ k \\ 0$	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$	$\begin{bmatrix} 0\\1\\0 \end{bmatrix}$	1 0 0	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$

- 2. Compute the determinant of the following matrix. Make sure to expand it along the most efficient row/column.
 - 4 0 2 0 7 5 0
- 3. True or false:
 - (a) $\det(A+B) = \det A + \det B$
 - (b) If two columns of a matrix are equal, then its determiant is 0.
 - (c) If $\det A = 0$, then two rows or two columns of A are the same, or one row or one column of A is zero.
 - (d) det $A^T = (-1)^n \det A$.
- 4. Find a formula for det(rA) in terms of r and det A.
- 5. Use Cramer's rule to solve the following system of equations.
 - $3x_1 2x_2 = 3$ $-4x_1 + 6x_2 = -5$
- 6. Find the values for the parameter s that make the following system of equations have a unique solution. Then use Cramer's rule to find the solution (the solution should depend on s).

 $3sx_1 + 5x_2 = 3$ $12x_1 + 5sx_2 = 2$

0	-2	-1
5	0	0
1	1	$\begin{pmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$

8. Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at (1, 0, -3), (1, 2, 4), and (5, 1, 0).

9. Is
$$\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
 an eigenvector of $\begin{bmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{bmatrix}$? If so, find the eigenvalue.

Is
$$\lambda = -2$$
 an eigenvalue of $\begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix}$? Why or why not?

10. Find all the eigenvalues and the eigenvectors of the following matrices.

0	0	0]	Γ	0	0	0]	
0	2	5		0	2	5	
0	0	-1	L	0	0	$\begin{bmatrix} 0\\5\\-1 \end{bmatrix}$	

11. Without writing the matrix, find one eigenvalue and eigenvector of the following linear transformations

T is the transformation on \mathbb{R}^2 that reflects points across some line through the origin.

T is the transformation on \mathbb{R}^3 that rotates points about some line through the origin.

- 12. Construct an example of a 2×2 matrix with only one distinct eigenvalue.
- 13. Consider an $n \times n$ matrix A with the property that the row sums all equal the same number s. Show that s is an eigenvalue of A. [Hint: Find an eigenvector.]
- 14. Let λ be an eigenvalue of an invertible matrix A. Show that λ^{-1} is an eigenvalue of A^{-1} . [*Hint:* Suppose a nonzero **x** satisfies $A\mathbf{x} = \lambda \mathbf{x}$.]