MATH 3A: HOMEWORK 6

Due Tuesday, Nov 22st, at the beginning of your discussion session

1. As R runs through each of the following six matrices: explain which row operation is performed when a matrix A is multiplied on the left by the matrix R; and compute $\operatorname{det} R$ and $\operatorname{det} R A$.
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & k & 1\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1\end{array}\right]\left[\begin{array}{lll}k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
2. Compute the determinant of the following matrix. Make sure to expand it along the most efficient row/column.

$$
\left|\begin{array}{rrrrr}
4 & 0 & -7 & 3 & -5 \\
0 & 0 & 2 & 0 & 0 \\
7 & 3 & -6 & 4 & -8 \\
5 & 0 & 5 & 2 & -3 \\
0 & 0 & 9 & -1 & 2
\end{array}\right|
$$

3. True or false:
(a) $\operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B$
(b) If two columns of a matrix are equal, then its determiant is 0 .
(c) If $\operatorname{det} A=0$, then two rows or two columns of A are the same, or one row or one column of A is zero.
(d) $\operatorname{det} A^{T}=(-1)^{n} \operatorname{det} A$.
4. Find a formula for $\operatorname{det}(r A)$ in terms of r and $\operatorname{det} A$.
5. Use Cramer's rule to solve the following system of equations.

$$
\begin{aligned}
3 x_{1}-2 x_{2}= & 3 \\
-4 x_{1}+6 x_{2} & =-5
\end{aligned}
$$

6. Find the values for the parameter s that make the following system of equations have a unique solution. Then use Cramer's rule to find the solution (the solution should depend on s).

$$
\begin{aligned}
& 3 s x_{1}+5 x_{2}=3 \\
& 12 x_{1}+5 s x_{2}=2
\end{aligned}
$$

7. Use Cramer's rule to find the inverse of the matrix:

$$
\left[\begin{array}{rrr}
0 & -2 & -1 \\
5 & 0 & 0 \\
-1 & 1 & 1
\end{array}\right]
$$

8. Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at $(1,0,-3),(1,2,4)$, and $(5,1,0)$.
9. Is $\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]$ an eigenvector of $\left[\begin{array}{lll}3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5\end{array}\right]$? If so, find the eigenvalue.

Is $\lambda=-2$ an eigenvalue of $\left[\begin{array}{rr}7 & 3 \\ 3 & -1\end{array}\right]$? Why or why not?
10. Find all the eigenvalues and the eigenvectors of the following matrices.
$\left[\begin{array}{rrr}0 & 0 & 0 \\ 0 & 2 & 5 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{rrr}0 & 0 & 0 \\ 0 & 2 & 5 \\ 0 & 0 & -1\end{array}\right]$
11. Without writing the matrix, find one eigenvalue and eigenvector of the following linear transformations
T is the transformation on \mathbb{R}^{2} that reflects points across some line through the origin.
T is the transformation on \mathbb{R}^{3} that rotates points about some line through the origin.
12. Construct an example of a 2×2 matrix with only one distinct eigenvalue.
13. Consider an $n \times n$ matrix A with the property that the row sums all equal the same number s. Show that s is an eigenvalue of A. [Hint: Find an eigenvector.]
14. Let λ be an eigenvalue of an invertible matrix A. Show that λ^{-1} is an eigenvalue of A^{-1}. [Hint: Suppose a nonzero \mathbf{x} satisfies $A \mathbf{x}=\lambda \mathbf{x}$.]

