MATH 3A: HOMEWORK 5

Due Tuesday, Nov 8st, at the beginning of your discussion session

1. Let $A=\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right]$. Construct a 4×2 matrix D using only 1 and 0 as entries, such that $A D=I_{2}$. Is it possible that $C A=I_{4}$ for some 4×2 matrix C ? Why or why not?
2. Figure out if these matrices are invertible. You can use any method. You don't need to find the actual inverse for each invertible one.

$$
\left[\begin{array}{rr}
-4 & 6 \\
6 & -9
\end{array}\right]
$$

$$
\left[\begin{array}{rrr}
5 & 0 & 0 \\
-3 & -7 & 0 \\
8 & 5 & -1
\end{array}\right]
$$

$$
\left[\begin{array}{rrrr}
1 & 3 & 7 & 4 \\
0 & 5 & 9 & 6 \\
0 & 0 & 2 & 8 \\
0 & 0 & 0 & 10
\end{array}\right]
$$

$$
\left[\begin{array}{rrrr}
-1 & -3 & 0 & 1 \\
3 & 5 & 8 & -3 \\
-2 & -6 & 3 & 2 \\
0 & -1 & 2 & 1
\end{array}\right]
$$

3. An upper-triangular matrix is a matrix whose entries below the diagonal (i.e. when $i<j$) are zero. When is an upper-triangular matrix invertible? Justify your answer.
4. Can a square matrix with two identical columns be invertible? Why or why not?
5. Is it possible for a 5×5 matrix to be invertible when its columns do not span \mathbb{R}^{5} ? Why or why not?
6. If C is 6×6 and the equation $C \mathbf{x}=\mathbf{v}$ is consistent for every \mathbf{v} in \mathbb{R}^{6}, is it possible that for some \mathbf{v}, the equation $C \mathbf{x}=\mathbf{v}$ has more than one solution? Why or why not?
7. If the equation $H \mathbf{x}=\mathbf{c}$ is inconsistent for some \mathbf{c} in \mathbb{R}^{n}, what can you say about the equation $H \mathbf{x}=\mathbf{0}$? Why?
8. Explain why the columns of A^{2} span \mathbb{R}^{n} whenever the columns of A are linearly independent.
9. Show that if $A B$ is invertible, so is A. You cannot use Theorem 6(b), because you cannot assume that A and B are invertible. [Hint: There is a matrix W such that $A B W=I$. Why?]
10. Given $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$, find a vector in $\operatorname{Nul} A$ and a vector in $\operatorname{Col} A$.
11.

Let $\mathbf{v}_{1}=\left[\begin{array}{r}2 \\ 3 \\ -5\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-4 \\ -5 \\ 8\end{array}\right]$, and $\mathbf{w}=\left[\begin{array}{r}8 \\ 2 \\ -9\end{array}\right]$. Determine if \mathbf{w} is in the subspace of \mathbb{R}^{3} generated by \mathbf{v}_{1} and \mathbf{v}_{2}.
12. For the following matrix A, find p and q so that $\operatorname{Nul} A \subset$ \mathbb{R}^{p} and $\operatorname{Col} A \subset \mathbb{R}^{q}$. Then find a non-zero vector in each of these subspaces
$A=\left[\begin{array}{rrrr}3 & 2 & 1 & -5 \\ -9 & -4 & 1 & 7 \\ 9 & 2 & -5 & 1\end{array}\right]$
13. Find out whether each of the following sets of vectors is a basis of \mathbb{R}^{2} or \mathbb{R}^{3} (each line's a different set)
$\left[\begin{array}{r}5 \\ -2\end{array}\right],\left[\begin{array}{r}10 \\ -3\end{array}\right]$
$\left[\begin{array}{r}0 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{r}5 \\ -7 \\ 4\end{array}\right],\left[\begin{array}{l}6 \\ 3 \\ 5\end{array}\right]$
$\left[\begin{array}{r}3 \\ -8 \\ 1\end{array}\right],\left[\begin{array}{r}6 \\ 2 \\ -5\end{array}\right]$
$\left[\begin{array}{r}1 \\ -6 \\ -7\end{array}\right],\left[\begin{array}{r}3 \\ -4 \\ 7\end{array}\right],\left[\begin{array}{r}-2 \\ 7 \\ 5\end{array}\right],\left[\begin{array}{l}0 \\ 8 \\ 9\end{array}\right]$
14. For the following matrices whose echelon forms are given, find a basis of the null spaces and the column spaces. What is the rank and nullity of each one? What is rank

+ nullity?
$A=\left[\begin{array}{lllr}4 & 5 & 9 & -2 \\ 6 & 5 & 1 & 12 \\ 3 & 4 & 8 & -3\end{array}\right] \sim\left[\begin{array}{lllr}1 & 2 & 6 & -5 \\ 0 & 1 & 5 & -6 \\ 0 & 0 & 0 & 0\end{array}\right]$
$A=\left[\begin{array}{rrrr}-3 & 9 & -2 & -7 \\ 2 & -6 & 4 & 8 \\ 3 & -9 & -2 & 2\end{array}\right] \sim\left[\begin{array}{rrrr}1 & -3 & 6 & 9 \\ 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 0\end{array}\right]$

15. Construct a nonzero 3×3 matrix A and a vector \mathbf{b} such that b is not in $\operatorname{Col} A$.
16. Construct a nonzero 3×3 matrix A and a nonzero vector \mathbf{b} such that \mathbf{b} is in $\operatorname{Nul} A$.
17. True/False? Please justify your answer.

A subspace of \mathbb{R}^{n} is any set H such that (i) the zero vector is in H, (ii) \mathbf{u}, \mathbf{v}, and $\mathbf{u}+\mathbf{v}$ are in H, and (iii) c is a scalar and $c \mathbf{u}$ is in H.
If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are in \mathbb{R}^{n}, then $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is the same as the column space of the matrix $\left[\begin{array}{lll}\mathbf{v}_{1} & \cdots & \mathbf{v}_{p}\end{array}\right]$.
The set of all solutions of a system of m homogeneous equations in n unknowns is a subspace of \mathbb{R}^{m}.
The columns of an invertible $n \times n$ matrix form a basis for \mathbb{R}^{n}.
A subset H of \mathbb{R}^{n} is a subspace if the zero vector is in H.
Given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ in \mathbb{R}^{n}, the set of all linear combinations of these vectors is a subspace of \mathbb{R}^{n}.
The null space of an $m \times n$ matrix is a subspace of \mathbb{R}^{n}.
18. What can you say about $\operatorname{Nul} B$ when B is a 5×4 matrix with linearly independent columns?
19. What is the rank of a 4×5 matrix whose null space is threedimensional?
20. If the subspace of all solutions of $A \mathbf{x}=\mathbf{0}$ has a basis consisting of three vectors and if A is a 5×7 matrix, what is the rank of A ?
21. Write \mathbf{x} in terms of the basis vectors.

$$
\begin{aligned}
& \mathbf{b}_{1}=\left[\begin{array}{r}
1 \\
-4
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{r}
-2 \\
7
\end{array}\right], \mathbf{x}=\left[\begin{array}{r}
-3 \\
7
\end{array}\right] \\
& \mathbf{b}_{1}=\left[\begin{array}{r}
1 \\
-3
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{r}
-3 \\
5
\end{array}\right], \mathbf{x}=\left[\begin{array}{r}
-7 \\
5
\end{array}\right]
\end{aligned}
$$

