MATH 3A: HOMEWORK 4

Due Tuesday, Nov 1st, at the beginning of your discussion session

1. Find the matrix of ?s.

$$
\left[\begin{array}{lll}
? & ? & ? \\
? & ? & ? \\
? & ? & ?
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
3 x_{1}-2 x_{3} \\
4 x_{1} \\
x_{1}-x_{2}+x_{3}
\end{array}\right]
$$

2. Find the standard matrix for each of the following transformations. Find out if each of them is one-toone, onto. (or both, or neither)
$T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(0, x_{1}+x_{2}, x_{2}+x_{3}, x_{3}+x_{4}\right)$
$T\left(x_{1}, x_{2}\right)=\left(2 x_{2}-3 x_{1}, x_{1}-4 x_{2}, 0, x_{2}\right)$
$T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-5 x_{2}+4 x_{3}, x_{2}-6 x_{3}\right)$
3. Suppose vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ span \mathbb{R}^{n}, and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Suppose $T\left(\mathbf{v}_{i}\right)=\mathbf{0}$ for $i=$ $1, \ldots, p$. Show that T is the zero transformation. That is, show that if \mathbf{x} is any vector in \mathbb{R}^{n}, then $T(\mathbf{x})=\mathbf{0}$.
4. Which of the following matrices can be multiplied? (be careful, the order in which you are trying to multiply them changes the answer!) Multiply a few of them abut indicate for every two whether they can be multiplied.

$$
\begin{aligned}
& A=\left[\begin{array}{rrr}
2 & 0 & -1 \\
4 & -5 & 2
\end{array}\right], \quad B=\left[\begin{array}{rrr}
7 & -5 & 1 \\
1 & -4 & -3
\end{array}\right], \\
& C=\left[\begin{array}{rr}
1 & 2 \\
-2 & 1
\end{array}\right], \quad D=\left[\begin{array}{rr}
3 & 5 \\
-1 & 4
\end{array}\right], \quad E=\left[\begin{array}{r}
-5 \\
3
\end{array}\right]
\end{aligned}
$$

5. Find the standard matrix for the following transformations.
$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}, T\left(\mathbf{e}_{1}\right)=(3,1,3,1)$, and $T\left(\mathbf{e}_{2}\right)=(-5,2,0,0)$, where $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$.
$T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad T\left(\mathbf{e}_{1}\right)=(1,4), \quad T\left(\mathbf{e}_{2}\right)=(-2,9), \quad$ and $T\left(\mathbf{e}_{3}\right)=(3,-8)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}$, and \mathbf{e}_{3} are the columns of the 3×3 identity matrix.
6. True or false?

- The range of the transformation $\mathbf{x} \mapsto A \mathbf{x}$ is the set of all linear combinations of the columns of A.
- A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first reflects points through the x_{1}-axis and then reflects points through the x_{2} axis. Show that T can also be described as a linear transformation that rotates points about the origin. What is the angle of that rotation?
- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ always maps the origin of \mathbb{R}^{n} to the origin of \mathbb{R}^{m}.

7. Let $A=\left[\begin{array}{rr}3 & -6 \\ -2 & 4\end{array}\right]$. Construct a 2×2 matrix B such that $A B$ is the zero matrix. Use two different nonzero columns for B.
8. Find the inverse of the following matrix.

$$
\left[\begin{array}{rrr}
1 & 0 & -2 \\
-3 & 1 & 4 \\
2 & -3 & 4
\end{array}\right]
$$

9. Find the inverses of the following matrices

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \text { and }\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 5\end{array}\right]$ and $D=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right]$. Compute $A D$ and $D A$. Explain how the columns or rows of A change when A is multiplied by D on the right or on the left. Find a 3×3 matrix B, not the identity matrix or the zero matrix, such that $A B=B A$.
11.

If $A=\left[\begin{array}{rr}1 & -2 \\ -2 & 5\end{array}\right]$ and $A B=\left[\begin{array}{rrr}-1 & 2 & -1 \\ 6 & -9 & 3\end{array}\right]$, determine the first and second columns of B.
12. Suppose P is invertible and $A=P B P^{-1}$. Solve for B in terms of A.
13. Explain why the columns of an $n \times n$ matrix A are linearly independent when A is invertible.
14. Suppose $A B=A C$, where B and C are $n \times p$ matrices and A is invertible. Show that $B=C$. Is this true, in general, when A is not invertible?
15. Let A be an invertible $n \times n$ matrix, and let B be an $n \times p$ matrix. Show that the equation $A X=B$ has a unique solution $A^{-1} B$.
16. True or False: If an $n \times n$ matrix A has zeroes everywhere except for a single 1 in each row and column, then A is invertible.

