MATH 3A: HOMEWORK 2

Due Tuesday, October 18, at the beginning of your discussion session

1. Determine if the following vectors are linearly independent. If not, find a linear dependence relation between them

$$
\left[\begin{array}{l}
5 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
7 \\
2 \\
-6
\end{array}\right],\left[\begin{array}{r}
9 \\
4 \\
-8
\end{array}\right]
$$

2. Same as 1st problem for:

$$
\left[\begin{array}{r}
2 \\
-3
\end{array}\right],\left[\begin{array}{r}
-4 \\
6
\end{array}\right]
$$

3. Determine the value of h that will make the following vectors linearly dependent.

$$
\left[\begin{array}{r}
2 \\
-2 \\
4
\end{array}\right],\left[\begin{array}{r}
4 \\
-6 \\
7
\end{array}\right],\left[\begin{array}{r}
-2 \\
2 \\
h
\end{array}\right]
$$

4. Determine the value of h that will make the following vectors linearly dependent.

$$
\left[\begin{array}{r}
1 \\
5 \\
-3
\end{array}\right],\left[\begin{array}{r}
-2 \\
-9 \\
6
\end{array}\right],\left[\begin{array}{r}
3 \\
h \\
-9
\end{array}\right]
$$

5. Given $A=\left[\begin{array}{rrr}2 & 3 & 5 \\ -5 & 1 & -4 \\ -3 & -1 & -4 \\ 1 & 0 & 1\end{array}\right]$, observe that the third column is the sum of the first two columns. Find a nontrivial solution of $A \mathbf{x}=\mathbf{0}$.
6. True or False? Please Justify your answer.
a. The columns of a matrix A are linearly independent if the equation $A \mathbf{x}=\mathbf{0}$ has the trivial solution.
b. If S is a linearly dependent set, then each vector is a linear combination of the other vectors in S.
c. The columns of any 4×5 matrix are linearly dependent.
d. If \mathbf{x} and \mathbf{y} are linearly independent, and if $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is linearly dependent, then \mathbf{z} is in $\operatorname{Span}\{\mathbf{x}, \mathbf{y}\}$.
7. True or False? Please Justify your answer.
a. If \mathbf{u} and \mathbf{v} are linearly independent, and if \mathbf{w} is in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$, then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent.
b. If three vectors in \mathbb{R}^{3} lie in the same plane in \mathbb{R}^{3}, then they are linearly dependent.
c. If a set contains fewer vectors than there are entries in the vectors, then the set is linearly independent.
d. If a set in \mathbb{R}^{n} is linearly dependent, then the set contains more than n vectors.
8. Determine whether \mathbf{b} is in the range of A.

$$
A=\left[\begin{array}{rrr}
1 & 0 & -3 \\
-3 & 1 & 6 \\
2 & -2 & -1
\end{array}\right], \mathbf{b}=\left[\begin{array}{r}
-2 \\
3 \\
-1
\end{array}\right]
$$

9. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps $\mathbf{u}=$ $\left[\begin{array}{l}3 \\ 4\end{array}\right]$ into $\left[\begin{array}{l}4 \\ 1\end{array}\right]$ and maps $\mathbf{v}=\left[\begin{array}{l}3 \\ 3\end{array}\right]$ into $\left[\begin{array}{r}-1 \\ 3\end{array}\right]$. Use the fact that T is linear to find the images under T of $2 \mathbf{u}, 3 \mathbf{v}$, and $2 \mathbf{u}+3 \mathbf{v}$.
10. Let $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \mathbf{y}_{1}=\left[\begin{array}{l}2 \\ 5\end{array}\right]$, and $\mathbf{y}_{2}=\left[\begin{array}{r}-1 \\ 6\end{array}\right]$, and let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps \mathbf{e}_{1} into \mathbf{y}_{1} and maps \mathbf{e}_{2} into \mathbf{y}_{2}. Find the images of $\left[\begin{array}{r}5 \\ -3\end{array}\right]$ and $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
11. Are the following statements always true? If so, please give a justification. If not, then give at least one example where it is false. This is called giving a counter-example to a statement. (the statements are on the next page)

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}$ are in \mathbb{R}^{4} and $\mathbf{v}_{3}=2 \mathbf{v}_{1}+\mathbf{v}_{2}$, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is linearly dependent.
If \mathbf{v}_{1} and \mathbf{v}_{2} are in \mathbb{R}^{4} and \mathbf{v}_{2} is not a scalar multiple of \mathbf{v}_{1}, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly independent.
If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{5}$ are in \mathbb{R}^{5} and $\mathbf{v}_{3}=\mathbf{0}$, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}\right\}$ is linearly dependent.
If $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are in \mathbb{R}^{3} and \mathbf{v}_{3} is not a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent.

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}$ are in \mathbb{R}^{4} and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is also linearly dependent.

If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ is a linearly independent set of vectors in \mathbb{R}^{4}, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is also linearly independent. [Hint: Think about $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}+0 \cdot \mathbf{v}_{4}=\mathbf{0}$.]

