MATH 3A: HOMEWORK 2

Due Tuesday, October 18, at the beginning of your discussion session

1

1. Determine if the following vectors are linearly independent. If not, find a linear dependence relation between them

$$\begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 7 \\ 2 \\ -6 \end{bmatrix}, \begin{bmatrix} 9 \\ 4 \\ -8 \end{bmatrix}$$

2. Same as 1st problem for:

$$\begin{bmatrix} 2 \\ -3 \end{bmatrix}, \begin{bmatrix} -4 \\ 6 \end{bmatrix}$$

3. Determine the value of h that will make the following vectors linearly dependent.

$$\begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix}, \begin{bmatrix} 4 \\ -6 \\ 7 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \\ h \end{bmatrix}$$

4. Determine the value of h that will make the following vectors linearly dependent.

$$\begin{bmatrix} 1 \\ 5 \\ -3 \end{bmatrix}, \begin{bmatrix} -2 \\ -9 \\ 6 \end{bmatrix}, \begin{bmatrix} 3 \\ h \\ -9 \end{bmatrix}$$

5. Given $A = \begin{bmatrix} 2 & 3 & 5 \\ -5 & 1 & -4 \\ -3 & -1 & -4 \\ 1 & 0 & 1 \end{bmatrix}$, observe that the third column 11. Are the following statements always true? If so, please give a justification. If not, then give at

is the sum of the first two columns. Find a nontrivial solution of $A\mathbf{x} = \mathbf{0}$.

- 6. True or False? Please Justify your answer.
 - a. The columns of a matrix A are linearly independent if the equation $A\mathbf{x} = \mathbf{0}$ has the trivial solution.
 - b. If S is a linearly dependent set, then each vector is a linear combination of the other vectors in S.
 - c. The columns of any 4×5 matrix are linearly dependent.
 - d. If x and y are linearly independent, and if $\{x, y, z\}$ is linearly dependent, then z is in Span $\{x, y\}$.

7. True or False? Please Justify your answer.

- a. If \mathbf{u} and \mathbf{v} are linearly independent, and if \mathbf{w} is in Span $\{\mathbf{u}, \mathbf{v}\}$, then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent.
- b. If three vectors in \mathbb{R}^3 lie in the same plane in \mathbb{R}^3 , then they are linearly dependent.
- c. If a set contains fewer vectors than there are entries in the vectors, then the set is linearly independent.
- d. If a set in \mathbb{R}^n is linearly dependent, then the set contains more than n vectors.
- 8. Determine whether \mathbf{b} is in the range of A.

$$A = \begin{bmatrix} 1 & 0 & -3 \\ -3 & 1 & 6 \\ 2 & -2 & -1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -2 \\ 3 \\ -1 \end{bmatrix}$$

- 9. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps $\mathbf{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ into $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$ and maps $\mathbf{v} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ into $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$. Use the fact that T is linear to find the images under T of $2\mathbf{u}$, $3\mathbf{v}$, and $2\mathbf{u} + 3\mathbf{v}$.
- 10. Let $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y}_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$, and $\mathbf{y}_2 = \begin{bmatrix} -1 \\ 6 \end{bmatrix}$, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps \mathbf{e}_1 into \mathbf{y}_1 and maps \mathbf{e}_2 into \mathbf{y}_2 . Find the images of $\begin{bmatrix} 5 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.
 - 1. Are the following statements always true? If so, please give a justification. If not, then give at least one example where it is false. This is called giving a *counter-example* to a statement. (the statements are on the next page)

If $\mathbf{v}_1, \dots, \mathbf{v}_4$ are in \mathbb{R}^4 and $\mathbf{v}_3 = 2\mathbf{v}_1 + \mathbf{v}_2$, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is linearly dependent.

If \mathbf{v}_1 and \mathbf{v}_2 are in \mathbb{R}^4 and \mathbf{v}_2 is not a scalar multiple of \mathbf{v}_1 , then $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly independent.

If $\mathbf{v}_1, \dots, \mathbf{v}_5$ are in \mathbb{R}^5 and $\mathbf{v}_3 = \mathbf{0}$, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5\}$ is linearly dependent.

If \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are in \mathbb{R}^3 and \mathbf{v}_3 is *not* a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent.

If v_1, \ldots, v_4 are in \mathbb{R}^4 and $\{v_1, v_2, v_3\}$ is linearly dependent, then $\{v_1, v_2, v_3, v_4\}$ is also linearly dependent.

If $\{\mathbf{v}_1, \dots, \mathbf{v}_4\}$ is a linearly independent set of vectors in \mathbb{R}^4 , then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is also linearly independent. [*Hint*: Think about $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 + 0 \cdot \mathbf{v}_4 = \mathbf{0}$.]