
Math 240 Extra Credit Assignment

In this assignment, we are going to prove some basic theorems in linear algebra. The
exercises start fairly easy and become harder. You will find the whole exercise challenging,
but if you complete it, I believe that you will feel very satisfied with it. Feel free to look
in the book, or linear algebra texts for definitions and explanations for things you may not
immediately understand. You can also ask me questions about the exercises. In the end,
you should write your own answers and explain all the steps in your thinking in a clear way.
To get credit for a question, your answers should be precise and completely correct, there
will not be any partial credit for questions.

Recall that a vector space is a set with two operations on it: addition and scalar multi-
plication; satisfying a bunch of axioms that can be found in section 7.6 of the book. Given
a vector space V , there are many ways to get other vector spaces from it. One way was to
take a subset S ⊂ V of vectors and take the span of S. The span of S is the set of all finite
linear combinations of elements of S.

Span(S) =
{
λ1s1 + . . . λksk

∣∣ k ∈ N, λi ∈ R and si ∈ S
}

Exercise 1. Let V be a vector space and S ⊂ V is a subset of V . Show that Span(S) is a
subspace.

Exercise 2. Let V be a vector space and W a subspace. What is Span(W )? Prove that
your answer is correct.

Recall the notion of linear independence. A the elements of a subset S ⊂ V are said to
be linearly independent if there is no non-trivial finite linear combination

λ1s1 + · · ·+ λksk = 0

of them equalling zero. We say non-trivial because if we take all the coefficients in the linear
combination to be 0, then we would trivially get 0. Also recall that S is called a basis of V
if the elements of S are linearly independent and Span(S) = V .

Exercise 3. Show that if S is a basis for V , then every element of V can be written in a
unique way as a finite linear combination of elements of S.

One interesting question is whether every vector space has a basis. It is easy to see that
vector spaces like Rn have a basis, in fact we know that Rn has a finite basis, consisting of
n elements. Recall that the size of a basis for a vector space is the same for any to different
bases for the same space. This size is called the dimension of the space. So the dimension
of Rn is n. We saw, however, some vector spaces that do not have a finite basis, which
means they are infinite dimensional. Weird.
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Exercise 4 (Harder exercise). Recall that the set of continuous functions on the unit
interval

C =
{
f : [0, 1] → R

∣∣ f is continuous
}

is a vector space. Prove that this vector space does not have a finite basis. (hint: assume
that there was a finite basis and then show that there is an element you cannot get as a
linear combination of your ’basis’).

Back to our question: does every vector space have a (not necessarily finite) basis? We
will not prove the answer to this question in this assignment. But I want to tell you that
if you want to show that every vector space has a basis, then you have to make use of an
interesting thing called Zorn’s lemma. Zorn’s lemma is another version of something called
the axiom of choice, which says that if you are given an infinite collection of sets, you can
choose one element in each of them and make a set of representatives for this collection of
sets. It seems obvious that you should be able to do this, but assuming this to be true leads
to a proof of the funny statement that you can cut a ball into finitely many pieces and put
it back together to get two balls of the same size. Weird.

Anyway, another way to make vector spaces is to take products of vector spaces. The
product of two vector spaces V and W is defined to be the set:

V ×W =
{
(v, w)

∣∣ v ∈ V and w ∈ W
}

To make V ×W into a vector space, we need to define addition and scalar multiplication
on it. Define (v1, w1)+ (v2, w2) = (v1 +w1, v2 +w2) and λ(v, w) = (λv, λw). You can check
that these operations satisfy all the axioms of a vector space.

Exercise 5. Knowing the dimensions of V and W , what is the dimension of V ×W? Prove
your answer (hint: start with a basis for V and a basis for W and construct a basis for
V ×W and prove that it really is a basis; then count the number of elements in it).

Recall that a linear transformation between two vector spaces is a function f : V → W
that respects addition and multiplication in the sense that f(v1 + v2) = f(v1) + f(v2) and
f(λv1) = λf(v1) for every v1, v2 ∈ V and λ ∈ R. We saw in class how linear transformations
between Rn and Rm correspond to m × n matrices. Recall that the kernel of a linear
transformation is the soluion space to f(v) = 0.

Ker(f) =
{
v ∈ V

∣∣ f(v) = 0
}

And the image is

Im(f) =
{
w ∈ W

∣∣ there is a v ∈ V such that f(v) = w
}

Exercise 6. Show that the kernel of a linear transformation f : V → W is a subspace of
V and the image of f is a subspace of W

Now we are going to define the quotient of one vector space by another. Let V be a
vector space and W be a subspace of V . We are going to define a set Q which we are going
to turn into a vector space in a moment. Elements of Q are written as

v + W

for elements v ∈ V . But we say that v1 + W and v2 + W are equal, v1 + W = v2 + W. if
v1 − v2 ∈ W . So, in a way, the big W allows us to pull out elements of W from it, and two
elements in Q are equal if they are equivalent in this way. So we have elements in Q being
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represented by elements in V as v +W but more than one element in V represent the same
element in Q. All those that differ by elements of W represent the same element in Q.

What is addition in Q? It is defined as you would expect:

(v1 + W ) + (v2 + W ) = (v1 + v2) + W

The issue is that we can represent the same element in Q by different elements in V as
v + W . We need to check that this addition is well defined in the sense that picking
different elements of V as representatives for the same element in Q does not change the
answer of the addition. Indeed, let v1 + W = v2 + W and v3 + W = v4 + W , then we have
v1 = v2 + w1 for some w1 in W and v3 = v4 + w2 for some w2 ∈ W . Then

(v1+W )+(v3+W ) = v1+v3+W = v2+w1+v4+w2+W = v2+v4+w1+w2+W = (v2+v4)+W

So the result of the addition does not depend on the representatives chosen. This makes
the addition operation well-defined.

Define the scalar multiplication in Q as

λ(v + W ) = λv + W

Exercise 7. Show that the multiplication operation in Q is well-defined.

Q is called the quotient space and is usually denoted by V/W . Of course, we do need to
check that these operations make Q into a vector space by checking all the axioms to really
know that it is a vector space.

Define the map q : V → Q by sending q(v) = v + W ∈ Q.

Exercise 8. Find the kernel of the map q. Prove your answer. (you first need to see what
is the 0 element in Q)

Let f : V → W be a linear transformation. You showed that the kernel is a subspace.
So we now know how to construct the quotient space V/ Ker(f). We want to define a new
linear transformation f̄ : V/ Ker(f) → W by setting

f̄(v + Ker(f)) = f(v)

Contemplate on this definition for a moment. . .

Exercise 9. Show that f̄ is well defined. That is, show that the value of f(v + Ker(f))
does not depend on the representative v chosen for the element v + Ker(f). Recall that
different v’s can give the same element in the quotient space V/ Ker(f). Also explain why
f̄ is a linear transformation.

f̄ is a linear transformation from V/ Ker(f) to W , but we can also consider it as a linear
transformation f̄ : V/ Ker(f) → Im(f) by forgetting about the vectors in W which are not
in the image in the first place.

Here is an important statement:

Exercise 10. Show that f̄ : V/ Ker(f) → Im(f) is one to one and onto. This means that
V/ Ker(f) and Im(f) are equivalent as vector spaces. (the technical term is isomorphic).

Exercise 11 (pretty hard). Show that for V a vector space and W a subspace, we have

dim(V/W ) = dim(V )− dim(W )
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Here is our coup de gras, the rank-nullity theorem that we used in class so many times:

Exercise 12. Recall that the rank of a linear transformation is the dimension of its image.
The nullity of a linear transformation is the dimension of its kernel. Using the previous
exercises, show that if f : V → W is a linear transformation, then

rank(f) + nullity(f) = dim(V )
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