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I wrote my first papers on algebraic geometry; specifically on derived categories of sheaves, matrix
factorizations and projective duality. I am now studying the relationship between computational
complexity theory on the one hand, and algebraic geometry, category theory, and homological algebra
on the other.

My research is based on three basic theses:

(1) Every kind of algebraic or geometric object in mathematics has a natural notion of computational
complexity.

(2) The complexity of a mathematical object has something to do with its relationships with other
objects, and with its invariants.

(3) Concepts like ‘polynomial vs. exponential complexity’, ‘complexity classes’, ‘completeness’,
‘reduction’ are more pervasive in mathematics than it would seem at first glance.

Based on these, I am studying computational complexity classes in algebra, geometry and category
theory that exist internally in these fields. I see my research as an effort to make computational
complexity a proper part of mainstream mathematics.

In theoretical computer science, it is widely expected that NP-complete problems like the Boolean
satisfiability problem have exponential complexity lower-bounds, yet the best known such bound is
n
√

3 (and this includes some extra space restrictions), so we need as many intermediate problems
as we can find to help make progress on these fundamental lower-bound problems. The questions
about these geometric and categorical complexity classes are seemingly easier versions of the P vs
NP problem. In this sense, my research creates problems of interest to theoretical computer science,
as well as a richer mathematical theory around computational complexity theory.

1. Previous Work

1.1. Complexity Classes and Completeness in Algebraic Geometry. What is the complexity
of an algebraic variety? Do there exist natural complexity classes of sequences of algebraic varieties?
How do we express complexity results about algebraic varieties without assuming integer, or rational
coefficients? These questions were the starting points of my work on complexity classes in algebraic
geometry [Isi16].

In recent years, there has been renewed interest from the mathematical community in Valiant’s
algebraic/arithmetic complexity classes of polynomials, and the determinant vs permanent problem
which is an algebraic problem similar to the P vs NP problem. In loc. cit., I described an algebraic
geometry version of Valiant’s theory, showed that there is a version of the P vs NP question in it,
and proved that there is an NP-complete problem in this theory.

The complexity of an embedded projective or bi-projective algebraic variety X is defined as the
total cost of producing polynomials that cut out X, using a straight-line program (a list of arithmetic
instructions). A sequence of varieties (Xn) is in Pproj if the complexity of Xn grows polynomially.
Sequences in NPproj are the projections of sequences of Xn ⊂ Pn1(n)×Pn2(n) in Pproj, onto the first
component Pn1(n). These are natural geometric generalizations of P and NP from classical Turing
Complexity.

Key concepts in computational complexity are those of reduction and completeness. A sequence
(Xn ⊂ Pn(n)) reduces to (Yn ⊂ Pm(n)) if we can get each Xn from a Ym by taking a linear section (m
possibly larger than n but polynomially bounded in n). A sequence Yn is complete in a complexity
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class of every other sequence in in the class reduces to (Yn); making Yn the sequence with the highest
complexity in its class. The main result of the paper is the following:

Theorem 1. The Segre embedding of the Universal Circuit Resultant is NPproj-complete.

It can be said that this Universal Circuit Resultant is ‘the Travelling Salesman Problem, or the
Boolean Satisfiability Problem of this theory’. While this is true in the sense that it is a complete
problem, the more natural question is the completeness of the resultant (of, say, a number of qua-
dratic equations). Indeed, the NP-completeness of the usual resultant (the so-called ’homogeneous
Nullstellensatz problem’) is a long-standing open problem in Blum-Shub-Smale theory [Shu14]. In
fact, it was not known whether any sequence of compact objects could be NP-complete. The proof
in [Isi16] (easily adapted to the Blum-Shub-Smale setting) makes the Universal Circuit Resultant
the first compact sequence known to be NP-complete.

This notion of complexity leads to many basic questions in algebraic geometry. For example: given
a variety Xn, what is the highest possible complexity of a desingularization of Xn as a function of
the complexity of Xn? In the long run, future analyses on the complexity effects of interesting
geometric constructions such as desingularization, taking minimal models, taking projective duals,
and future results on the complexity implications of invariants should use this language rather than
using the Turing Machine language (and being force to use integer or rational coefficients), or using
the dense or sparse models within BSS complexity.

1.2. Categorical Complexity. We can find a good complexity theory within each category we
consider, but how do we relate the complexities of objects that are in different categories but are
somehow related? For example, we want to try to analyze the complexity effects of the cohomology
functor, or certain derived functors. It is apparent that we need a general theory of complexity that
applies equally well to algebras, algebraic varieties, vector spaces, topological spaces,. . . and all
kinds of mathematical objects.

With this thought, S. Basu and I started analyzing complexity theoretic properties of toposes in
2015, and ended up discovering a simple approach that makes sense for all categories, not just toposes.
This is written in [BI16]. The idea is to pre-determine a set of morphisms in the category called
the basic morphisms; and use constructions called diagram computations to make new diagrams in
the category. One starts each diagram computation with an empty diagram, and then successively
adds new basic morphisms, or the limits and colimits of subdiagrams to make more and more
complex objects and morphisms. For example, here is a diagram computation of the morphism of
sets f : {0, 1, 2} → {0, 1, 2}, f(0) = 0, f(1) = 0, f(2) = 1 using two colimits.

{1} {1} {1}

{1}

{1}

{0, 1, 2}{0, 1, 2}

4,5

1 2 3

6

7

8

1. _,{1} id−→ {1},1
2. _,{1} id−→ {1},2
3. _,{1} id−→ {1},3
4. _,{1} id−→ {1},1
5. 4,{1} id−→ {1},2
6. colim(1,2,3)

7. _,{1} id−→ {1},7
8. colim(1,2,3,4,6,7)

The total number of lines determines the cost of the computation and leads to the definition
of complexity, which is the cost of the cheapest diagram computation that produces an object or
morphism. Diagram computations come in three kinds, one where you are only allowed to use
so-called constructive limits, one with only constructive colimits, and the full mixed computations;
leading to the notions of limit complexity, colimit complexity and mixed complexity.

Here are some of the highlights from [BI16]:
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Basic examples: For sets, the colimit complexity of a set S is |S| + 1. Infinite sets are ’non-
computable’ in this theory. For topological spaces, colimit computations starting from simplices
and face maps define a simplicial complexity for topological spaces. Similarly, mixed computations
starting from points and intervals make cubical complexity. These measure how hard it is to make
a space from simplices and cubes respectively. Another important basic example is the lattice of
subsets of a finite set (considered as a category with inclusions as the morphisms). This corresponds
precisely to monotone Boolean complexity.
Comparison theorems for varieties/schemes: Starting from basic morphisms A1 c−→ A1, A2 +,×−−−→ A1,
A2 π1,π2−−−→ A1, and A1 → ∗, and ∗ c−→ A1 in the category of algebraic varieties over a field k, we get a
notion of geometric complexity C(X) for any variety X. Indeed, the complexity function C has the
same value for isomorphic varieties, and will be low for a hypersurface whose geometry is simple,
even if the defining polynomial has high complexity.

Nonetheless, there is a comparison theorem in each direction: If X is a variety which is the 0-set
of a polynomial with arithmetic complexity N , then the categorical limit complexity of X is bounded
by 5N . On the other hand, if X is a variety with limit complexity N , then X is isomorphic to the
zero-set of a polynomial map with complexity linearly bounded in N , i.e. it is less than c0 + c1N
where c0 and c1 are globally fixed constants.

For projective schemes in Pn: by building affine pieces with limits and then glueing them using
colimits, we showed that the mixed complexity of a projective scheme is bounded above by a constant
multiple of n2N , where N is the arithmetic complexity of its defining equations.
Comparison theorem for modules over polynomial rings: The category of k [x1, . . . , xn]-
modules is important because it is a step on the way to a full theory for sheaves. Moreover, we
can think of quotient modules as sheaves supported on embedded subvarieties, and therefore have
a theory that is closer to Valiant complexity. Here, colimit complexity is considered with basic
morphisms R xi−→R for variables, R c−→R for constants c ∈ k, the inclusions R i1,i2−−−→R⊕R, the diagonal
map R ∆−→R⊕R, addition R⊕R +−→R, and the canonical map R→ {0}.

We proved the following comparison theorems. If f ∈ k[x1, . . . , xn] has arithmetic formula com-
plexity N , then R f−→R has categorical complexity linearly bounded in N . On the other hand,
if R f−→R has colimit complexity N , then the arithmetic circuit complexity of f is polynomially
bounded in N .
P vs NP problem in categories: For any category C and set of basic morphisms, consider the
morphism category C•→•. Categorical complexity gives a function on the objects of C•→•. Now
consider the full subcategory of monomorphisms in C•→•, a left-adjoint to the inclusion of this
subcategory is called the image functor. We can consider it as a functor

imC : C•→• → C•→•.
Then, we can pose the following question. If a morphism X f−→Y has categorical complexity N , is
the complexity of imC(X

f−→Y ) polynomially bounded in N? This is the analogue of the P vs NP
problem in the category C. This can be studied for the any category C where the image functor
exists; in particular, categories of projective varieties/schemes, and semi-algebraic or constructible
spaces. We studied it in detail in the category of k [x1, . . . , xn]-modules, and found an upper bound
for the complexity of the image functor there.

1.3. The σ-Model-Landau-Ginzburg-Model correspondence. In earlier work, [Isi13], I proved
a statement relating the derived category of any variety given as the zero-scheme of a regular section
of a vector bundle to the singularity category of a related singular space. This statement, based on
Koszul duality, provides a new derived equivalence bridge between varieties and Landau-Ginzburg
models.

Theorem 2. [Isi13] Let X be a smooth variety and Y be the zero-scheme of a regular section
s ∈ Γ(X, E) of a finite rank vector bundle E. There is an equivalence

Db(Y ) = DC×
(Tot E∗, < s, · >)
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More precisely, I proved that the C×-equivariant singularity category of the only singular fiber
of the function given by pairing with s is equivalent to the derived category of Y as a triangulated
category. The proof uses a very elegant Koszul duality statement due to Mirkovic and Riche, called
linear Koszul duality. This equivalence also holds for the natural dg-enhancements of these categories
by the general results of Lunts and Orlov [LO10] about uniqueness of enhancements.

With this result, you can start with a variety Y which a complicated derived category, but after
replacing it with the derive-equivalent pair (Tot E∗/C∗, < s, · >), you have much more freedom in
geometrically manipulating Tot E∗ since it is a much simpler space. This is the basis of a lot of
application of the results on variations of GIT quotients and derived categories [BFK12, H-L12].

1.4. Homological Projective Duality, Relative Orlov Theorem, Matrix Factorizations.
My collaboration with M. Ballard, D. Deliu, D. Favero and L. Katzarkov. In [BDFIK13] and
[BDFIK14], we studied Homological Projective Duality for quotient varieties. Introduced by Kuznetsov,
this homological phenomenon is related to projective duality and can be used to prove a number
of derived equivalences originally conjectured by physicists. We invented a general new method for
constructing homological projective duals of quotient varieties and we used it to study this phe-
nomenon for d-Veronese embeddings in detail. In another paper, [BDFIK12], we developed essential
technical tools for working with matrix factorization categories and applied these new results to lift
fully faithfulness statements about derived categories to matrix factorization categories.

In the study of the derived categories of algebraic varieties, a useful notion is that of a semi-
orthogonal decomposition. Such a decomposition is a way of dissecting a triangulated category
into smaller pieces, with the sets of morphisms between the pieces forming the analogue of glueing
data. Sometimes, these decompositions have a clear geometric in origin (e.g. for blow-ups, projective
bundles, and variations of GIT quotients). Other times, the decompositions are of a more mysterious
nature. For example, the derived category of a certain Pfaffian cubic 4-Fold has a semi-orthogonal
decomposition in which one of the pieces is equivalent to the derived category of a K3-surface.

In [Kuz07], Kuznetsov discovered a very interesting duality phenomenon about semi-orthogonal
decompositions called Homological Projective Duality. It involves semi-orthogonal decompositions
of the derived category Db(X) of a smooth scheme X together with a morphism X → P(V ) and
the derived category of a homological projective dual (HPD) Y → P(V ∗). The basic assumption is
that Db(X) has a special kind of semi-orthogonal decomposition, called a Lefschetz decomposition,
of the form:

Db(X) = 〈A0,A1(1), . . . ,Ai(i)〉,
where A0 ⊃ A1 ⊃ . . . ⊃ Ai is a filtered sequence of subcategories. The main virtue of a Lefschetz
decomposition is that it behaves well with respect to taking hyperplane sections of X. This gives
a semi-orthogonal decomposition of the family X of all hyperplane sections of X. Y is said to be
HPD to X if this decomposition is of the form:

(1) Db(X ) = 〈Db(Y ),A1(1) � Db(P(V ∗)), . . . ,Ai(i) � Db(P(V ∗))〉,
and the embedding of Db(Y ) is a Fourier-Mukai functor relative to P(V ∗).

Once this relationship is established between X → P(V ) and a possibly non-commutative Y →
P(V ∗) then not only do we have that Y is smooth and has a dual Lefschetz decomposition which
makes X HPD to Y but also we have semi-orthogonal decomposition relationships between the
derived categories of any complete linear sections of X and the corresponding dual complete linear
sections of Y . We call this Kuznetsov’s Fundamental Theorem of HPD. This enables one to prove
the existence of many interesting semi-orthogonal decompositions in algebraic geometry, including
the one for the Pfaffian cubic mentioned above.

Theorem 3 (Kuznetsov - Fundamental Theorem of HPD). Let Y → P(V ∗) be a homological pro-
jective dual to X → P(V ) with respect to the Lefschetz decomposition {Ai}. Let N = dimV . The
following are true:
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• The category Db(Y ) admits a dual Lefschetz decomposition

Db(Y ) = 〈Bj(−j), . . . ,B1(−1),B0〉
.
• Assume that XL and YL are complete linear sections, i.e.

dim(XL) = dim(X)− r and dim(YL) = dim(Y ) + r −N.

Then there exist semi-orthogonal decompositions,

Db(XL) = 〈CL,Ar(1), . . . ,Ai(i− r + 1)〉,

and,

Db(YL) = 〈Bj(N − r − j − 1), . . . ,BN−r(−1), CL〉.

Our results in [BDFIK13] start with the basic observation that if X is a (stacky) GIT quotient
Qss(L)/G that has a simple variation of GIT quotients, then a Lefschetz decomposition for X with
respect to the morphism corresponding to L can be constructed using the variation of GIT quotients
results in [BFK12, H-L12].

The second and crucial observation is that when X is replaced by a derived-equivalent Landau-
Ginzburg pair (Y, w) using the σ-LG correspondence (Theorem 2 above) from [Isi13], there is an
induced variation of GIT quotients on Y that gives the decomposition (1). One therefore obtains a
pair (Y ′, w) which can be considered as a homological projective dual. Our main result is as follows:

Theorem 4. The conclusions of the Fundamental Theorem of HPD hold for (Y ′, w).

Using the σ-LG correspondence or a more general form of Koszul duality as necessary on (Y ′, w)
allows one to replace the Landau-Ginzburg pair with a non-commutative variety. This is done in
[BDFIK14]. The conclusion is that many HPD statements come from considering variations of GIT
quotients at the LG-level. This story fits nicely into the following diagram.

D(Y, w) D(Y ′, w)

Db(X ) Db(Y )

VGIT

σ -LG corr. Koszul-Duality

HPD

Rela
tiv

eOrlo
v

In the case when X = P(W ) considered as embedded in P(SdW ) via the d-Veronese embedding,
the decomposition (1) is a new, relative version of a well-known theorem of Orlov [Orl09].

The rest of [BDFIK14] focuses on implementing the right side of the diagram in this d-Veronese
case. We consider a ‘local generator’ of the matrix factorization category of the pair (W×P(SdW ∗), w).
Calculating its graded sheaf-endomorphism algebra over P(SdW ∗) and using homological perturba-
tion techniques, we obtain a sheaf A of A∞-algebras over P(SdW ∗). When d > 2, we have

A = Sym(uOP(SdW∗)(1), u−1OP(SdW∗)(−1))⊗ Λ•W ∗,

where

µd(1⊗ vi1 , . . . , 1⊗ vid) =
u

d!

∂dw

∂xi1 . . . ∂xid

and µi = 0 for 2 < i < d. This gives a different description of the HPD. When d = 2, we recover the
HPD obtained in [Kuz05].
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2. Future Work

Further development of categorical complexity: A short term aim for categorical complexity
is to repeat what we did for algebraic varieties for semi-algebraic and constructible spaces: give good
comparison theorems with other notions of complexity. The second is to make a satisfying theory
for constructible and coherent sheaves, and to see what we can do for complexes of sheaves/modules
using the same diagram computation concept with homotopy limits and colimits. The sheaves and
derived category questions were actually part of the original motivation for [BI16] but we ended up
deciding that more basic development was necessary. Another part I want to think about is the
notion of universal computation for diagram computations.

Besides these plans, I am hoping that I can rely on the response from the community to see which
parts of categorical complexity need to be developed more than others.
Complexity classes from invariants in algebraic geometry, a continuation of [Isi16]: Let
M(·) be an invariant that associates a yes-no answer to each algebraic variety (e.g. is it rational?
is it non-empty? is h1(X) = 0). We can associate to M a complexity class as follows. When
defining NPproj, we had projected down efficiently-computable biprojective varieties from Pn×Pm;
now, instead of taking the points whose fibers are non-empty, we can take the closure of the set of
points whose fibers have M(Xx) hold true. So, if M measures whether X is non-empty, then we get
NPproj. In general, we get a new complexity class CCM associated to each invariant M .

This is a good way to think about the complexity of invariants. Similar to the main theorem of
[Isi16], I am able to prove that there is a CCM -complete sequence.
Complexity of coherent sheaves I can write down a complexity theory of coherent sheaves on
Pn similar to the complexity of projective varieties. Initially, this would be without complexes or
derived functors, and in this case, using a method similar to [Isi16], I can show that there is a
complete family.

Derived functors and the six functor formalism actually appear very naturally in the context of
a better complexity theory of sheaves: the base change theorem ensures that NP (which is defined
by push-forward) is closed under reductions (but I don’t yet have a completeness theorem in this
derived setting).

A construction similar to the one described above associating complexity classes to invariants
gives a complexity class CCH for any vector-space-valued invariant H, e.g. cohomology. I am
planning to explore this notion and how it relates to the properties of the invariant H.
Complexity-invariants, projective duality and the determinant vs permanent problem:
The most useful ‘complexity-invariant’ would be an invariant that would: (i) be low for the nth
determinant, (ii) be high for the nth permanent, and (iii) would behave well with respect to linear
sections. Of course, many cohomological invariants have Lefschetz theorems but few have been
studied in relation to the determinant vs permanent problem. This is partly because of how singular
these varieties are.

I think invariants of the projective dual variety are good to look into for finding invariants like
this. Already, looking at the dual side-steps the singularity issue of the determinant, since the dual
of the determinant is smooth (it’s the image of the Segre embedding). Two other reasons for looking
at duals: there is evidence that the invariants of the projective dual may behave well with respect
to a kind of ‘padding’ operation which makes different determinants and permanents have the same
degree; also, the dual variety of a reduction by projection (the key step in arguments about linear
reductions) is the dual variety of a corresponding linear section.

Some time ago, I began an investigation of the co-degree of a variety, i.e. the degree of the
projective dual. I calculated some early examples and also did some numerical-algebraic-geometry
calculations but the outcome was inconclusive. There is a lot on projective duality I have not
considered, as well as interesting developments like the work of Aluffi on the Chern-Mather involution
and generalizing known formulas for duality to singular cases [Alu16].
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Categorical complexity, lambda-calculus and 2-categories: The Curry-Howard-Lambek cor-
respondence is a beautiful correspondence between Cartesian-closed categories, constructive proof
systems and typed lambda calculi. At the level of complexity, it should relate complexity in lambda
calculus (which corresponds to Turing complexity, but is not as clean), to proof complexity, to a
notion of complexity in Cartesian-closed categories. I would like to compare this with our cate-
gorical complexity. There is also a 2-categorical version of the correspondence, which is not fully
written-down, but from what I understand, complexity concepts could be more transparent in this
2-categorical version.
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